Chapter 12

Mostafa Touny

December 7, 2023

Contents

Problems $\mathbf{2}$

Problems

$\mathbf{2}$

It is 6. For any $i \in \{0, 2, 4, 6, 8\}$, $6i \mod 10 = i$.

3

It suffices to find a ring with a subgroup which in turn is not closed under multiplication. Particularly the ring of rationals \mathbb{Q} and its subset $S = \{\frac{x}{2} \mid x \in \mathbb{Z}\} = \{x \ \frac{r}{2} \mid x \in \mathbb{Z}, y = 0, 1\}$. It is a subgroup as $\frac{x_0}{2} + \frac{x_1}{2} = \frac{x_0 + x_1}{2}$ where $x_0 + x_1 \in \mathbb{Z}$, and for $\frac{x_0}{2}$ there is $\frac{-x_0}{2}$ such that $\frac{x_0}{2} + \frac{-x_0}{2} = 0$. Observe $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \notin S$, So S is not closed under multiplication.

 $\mathbf{P}.\mathbf{S}.$

- Any subgroup under addition of a ring, satisfies the ring's definition, except for being closed under multiplication.
- Any set S closed under usual addition of integers, is also closed under usual multiplication of integers, Since $ab = \underbrace{a + a + \dots + a}_{b \text{ times}} \in S$.

$\mathbf{5}$

Unity's uniqueness. Let 1 and 1' be two unities. Then by definition 11' = 1'1 = 1', and 1'1 = 11' = 1. So 1 = 1'.

Multiplicative inverse uniqueness. Fix a_0 . Let b_0 and b_1 be two multiplicative inverses of a_0 . Then $b_0a_0 = a_0b_0 = 1$, and $b_1a_0 = a_0b_1 = 1$. So

$$a_0b_0 = a_0b_1$$

$$b_0(a_0b_0) = b_0(a_0b_1)$$

$$(b_0a_0)b_0 = (b_0a_0)b_1$$

$$b_0 = b_1$$

6

- **a.** For Z_6 , $3^2 = 3$ but $3 \neq 0$ and $3 \neq 1$.
- **b.** For $Z_4, 3 \cdot 3 = 0$ but $3 \neq 0$.
- **c.** For Z_4 , $2 \cdot 1 = 2 = 2 \cdot 3$ and $2 \neq 0$ but $1 \neq 3$.

 (\rightarrow) . By definition for some k,

$$bk = c$$
$$bk \cdot 1 =$$
$$bk \cdot aa^{-1} =$$
$$ab \cdot ka^{-1} =$$

 (\leftarrow) . By definition for some k,

$$ab \cdot k = c$$
$$a \cdot bk =$$

39

Consider arbitrary $ar_0a, ar_1a \in S$. Then

$$ar_0 a \cdot ar_1 a$$

= $ar_0 a^2 r_1 a$
= $ar_0 r_1 a \in S$

As $r_0r_1 \in R$. Also,

$$ar_0 a - ar_1 a$$

= $a[r_0 a - r_1 a]$
= $a[(r_0 - r_1)a]$
= $a(r_0 - r_1)a \in S$

As $r_0 - r_1 \in R$.

Since $1 \in R$, $a1a \in S$ but $a1a = a^2 = 1$.

40

(1), (2), (3), (5), (6) of a ring's definition in page 227 are satisfied by the usual properties of matrix algebra and integers.

Note the additive identity is the matrix

$$\begin{bmatrix} 0 & 0+0 \\ 0+0 & 0 \end{bmatrix}$$

We show (4). For any matrix $M \in \mathbb{R}$, where

$$M = \begin{bmatrix} a & a+b\\ a+b & b \end{bmatrix}$$

The matrix -M defined as

$$-M = \begin{bmatrix} -a & -a + (-b) \\ -a + (-b) & -b \end{bmatrix}$$

is in $M_2(Z)$, as $-a \in Z$ whenever $a \in Z$. Clearly M - M is the additive identity.

46

 $2 \in 2Z$ and $3 \in 3Z$ but $2 + 3 = 5 \notin 2Z \cup 3Z$, so $2Z \cup 3Z$ is not closed under addition.