Chapter 13

Mostafa Touny

December 10, 2023

Contents

Probl	er	ns	3																															
3.	•			•												•							•	•		•							•	
4.	•			•			•				•	•		•	•	•		•					•	•	•	•			•		•		•	
9.	•	•	•	•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	
18			•	•							•	•				•							•	•		•	•		•		•		•	
32		•	•	•			•				•	•	•	•	•	•		•		•		•	•	•	•	•	•	•	•		•		•	
57		•	•													•							•	•		•	•		•		•		•	

Problems

3

Let R be a commutative ring with the cancellation property. Assume for contradiction a is a zero-divisor. Then $a \neq 0$ and there's $b \neq 0$ such that ab = 0. By theorem 12.1 (page 229) It follows:

$$ab - ab = 0$$

$$a(b - b) = 0$$

$$= 0 \cdot 0$$

$$= 0 \cdot (b - b)$$

$$a = 0$$

Contradiction.

$\mathbf{4}$

Zero-divisors are 2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 5, 15. To see why assume $ab \mod 20 \equiv 0 \mod 20$. Then ab - 0 = ab = 20k for some k. a must contain a common factor with 20, as otherwise $b \geq 20$. So zero-divisors are multiples of a factor of 20.

Unities are 1, 3, 7, 9, 11, 13, 17, 19. No proof is found.

Zero-divisors and unities partition \mathbb{Z}_{20} .

9

We call $a \in Z \oplus Z \oplus Z$ strictZero if some component of a is 0 like (x, y, 0) but $a \neq (0, 0, 0)$.

Clearly a is a zero-divisor if and only if a is a *strictZero*.

For $a, b, c \in Z \oplus Z \oplus Z$, if ab, ac, bc are zero-divisors then they are *strictZeros*. If abc is not a zero-divisor then it is not a *strictZero*, in other words either abc = (0, 0, 0), or abc = (x, y, z) where $x, y, z \neq 0$. The latter case cannot happen as ab is a a *strictZero* so some component must be zero in abc. Therefore abc = (0, 0, 0).

Since Z has no zero-divisor, it follows each component is zero in one of a, b, c. In other words, The a, b, c we are characterizing, are *strictZeros*, such that no component is non-zero in the three of them.

$\mathbf{18}$

Let R be an integral domain and $a^2 = a$. Then

$$a^2 - a = 0$$
$$a(a - 1) = 0$$

Since there are no zero-divisors, either a = 0 or a - 1 = 0.

 $\mathbf{32}$

We know R is a group. By usual properties of addition and multiplication, It is a commutative ring.

6 is unity as

 $6 \cdot 0 = 0$ $6 \cdot 2 = 2$ $6 \cdot 4 = 4$ $6 \cdot 6 = 6$ $6 \cdot 8 = 8$

Each non-zero element has a unit as

 $2 \cdot 8 = 6$ $4 \cdot 4 = 6$ $6 \cdot 6 = 6$ $8 \cdot 2 = 6$

57

Observe by distributivity of rings $x^2 - 5x + 6 = (x - 3)(x - 2)$.

a

By the corollary (page 239) \mathbb{Z}_7 is a field, and hence has no zero-divisors. It follows either x - 3 = 0 or x - 2 = 0 so x = 3 or x = 2. Exactly two solutions.

\mathbf{b}

By computation 2 and 3 are the solutions.

Note nothing certifies \mathbb{Z}_8 is an integral domain.