Chapter 14

Mostafa Touny

December 17, 2023

Contents

Problems 2
1 2
3 2
4 2
5 2
11 3
15 3
32 3
37 3

Problems

1
We use Theorem 14.1 (ideal test) (page 249).
For $r_{0} a, r_{1} a \in\langle a\rangle$, We have $r_{0} a-r_{1} a=\left(r_{0}-r_{1}\right) a \in\langle a\rangle$ by distributivity and $r_{0}-r_{1} \in R$.
For $r \in R$ and $r_{0} a \in\langle a\rangle$, We have $r\left(r_{0} a\right)=\left(r r_{0}\right) a \in\langle a\rangle$ by associativity and $r r_{0} \in R$. Also $\left(r_{0} a\right) r=r_{0}(a r)=r_{0}(r a)=\left(r_{0} r\right) a$ by associativity and commutativity and $r_{0} r \in$ R.

3

The proof I is ideal by Theorem 14.1 (ideal test) (page 249) is nearly identical to Ex. 1.

Let J be an arbitrary ideal that contains $a_{1}, a_{2}, \ldots, a_{n}$. Then by definition $r a_{i} \in J$. Since it's a group $r_{1} a_{1}+\cdots+r_{n} a_{n} \in J$ for any $r_{i} \in R$.

4

By the subring test (page 230), $S=\{(x, x) \mid x \in Z\}$ is a subring as $(x, x)-(y, y)=$ $(x-y, x-y) \in S$ and $(x, x)(y, y)=(x y, x y) \in S$.
S is not an ideal as $(1,1) \in S$ and $(1,2) \in \mathbb{Z} \oplus \mathbb{Z}$ but $(1,2)(1,1)=(1,2) \notin S$. In other words, $(1,1)$ did not absorb $(1,2)$.

5

We use Theorem 12.3 (subring test) (page 230). $(a+b i)-\left(a^{\prime}+b^{\prime} i\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right) i \in S$ as $b-b^{\prime}$ is even. $(a+b i)\left(a^{\prime}+b^{\prime} i\right)=\left(a a^{\prime}-b b^{\prime}\right)+\left(a b^{\prime}+a^{\prime} b\right) i \in S$ as $a b^{\prime}+a^{\prime} b$ is even.
$1+2 i \in S$ and $1+1 i \in Z[i]$ but $(1+1 i)(1+2 i)=-1+3 i \notin S$ as 3 is not even. A counter-example of S being an ideal.

11

a
$\langle a\rangle=\langle 1\rangle=\mathbb{Z}$. We know $G C D(2,3)=1$ so by Theorem 0.2 (GCD is a linear combination) (page 4), there are $x, y \in \mathbb{Z}$ such that $2 x+3 y=1$. So for any integer m, $2(x m)+3(y m)=m$. In other words, $\mathbb{Z}=\langle 1\rangle \subset\langle 2\rangle+\langle 3\rangle$.
b
$\langle a\rangle=\langle 2\rangle$. Trivially $\langle 6\rangle+\langle 8\rangle \subset\langle 2\rangle$ as 2 is a common divisor of 6 and 8 . Observe $8(1)+6(-1)=2$. So for any multiple $2 m$, We have $8(m)+6(-m)=2 m$, concluding $\langle 2\rangle \subset\langle 8\rangle+\langle 6\rangle$.

15

By definition $A \subset R$ and $r=r 1 \in A$ for any $r \in R$.

32

Let B be an arbitrary ideal of $\mathbb{Z} \oplus \mathbb{Z}$ such that $A \subset B \subset \mathbb{Z} \oplus \mathbb{Z}$. Assume B properly contains A then we show $B=\mathbb{Z} \oplus \mathbb{Z}$.

By hypothesis we have $(a, b) \in B$ but not in A. So $a=3 q+r$ whereby either $r=1$ or $r=2$. Consider each case:

- $r=1$. Since $A \subset B,(3(-q),-(b-1)) \in B$. As B is a group, $(3(-q),-(b-1))+$ $(3 q+1, b)=(1,1) \in B$.
- $r=2$. Similarly $(3(q+1), b+1) \in B$ and $(3(q+1), b+1)-(3 q+2, b)=(1,1) \in B$.

By Ex. $15 B=\mathbb{Z} \oplus \mathbb{Z}$.
Had A been $\{(4 x, y) \mid x, y \in \mathbb{Z}\}$ then the property of it being a maximal ideal fails as the ideal $\{(2 x, y)\}$ is strictly larger.

Generally, $\{(r x, y)\}$ is a maximal ideal if and only if r is a prime. If r is composite then any divisor generates a larger ideal. If r is prime then for any m where $0<m<r$, $\operatorname{gcd}(r, m)=1$. It follows by Theorem $0.2(\mathrm{GCD}$ is a linear combination) (page 4) there is a linear combination $x r+y m=1$.

37

If $(x, y),(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ and $(x, y)(a, b)=(x a, y b) \in I$ then by definition $y b=0$. So either $y=0$ or $b=0$. In other words, either $(x, y) \in I$ or $(a, b) \in I$.

The set $\{(x, 2 y) \mid x, y \in Z\}$ is an ideal and properly contains I. So I is not maximal.

