Chapter 14

Mostafa Touny

December 17, 2023

Contents

blems	2
	2
3	2
4	2
5	2
11	3
15	3
32	3
37	3

Problems

1

We use *Theorem 14.1* (ideal test) (page 249).

For $r_0a, r_1a \in \langle a \rangle$, We have $r_0a - r_1a = (r_0 - r_1)a \in \langle a \rangle$ by distributivity and $r_0 - r_1 \in R$. For $r \in R$ and $r_0a \in \langle a \rangle$, We have $r(r_0a) = (rr_0)a \in \langle a \rangle$ by associativity and $rr_0 \in R$. Also $(r_0a)r = r_0(ar) = r_0(ra) = (r_0r)a$ by associativity and commutativity and $r_0r \in R$.

3

The proof I is ideal by *Theorem 14.1* (ideal test) (page 249) is nearly identical to Ex. 1.

Let J be an arbitrary ideal that contains a_1, a_2, \ldots, a_n . Then by definition $ra_i \in J$. Since it's a group $r_1a_1 + \cdots + r_na_n \in J$ for any $r_i \in R$.

$\mathbf{4}$

By the subring test (page 230), $S = \{(x, x) \mid x \in Z\}$ is a subring as $(x, x) - (y, y) = (x - y, x - y) \in S$ and $(x, x)(y, y) = (xy, xy) \in S$.

S is not an ideal as $(1,1) \in S$ and $(1,2) \in \mathbb{Z} \oplus \mathbb{Z}$ but $(1,2)(1,1) = (1,2) \notin S$. In other words, (1,1) did not absorb (1,2).

$\mathbf{5}$

We use *Theorem 12.3* (subring test) (page 230). $(a+bi)-(a'+b'i) = (a-a')+(b-b')i \in S$ as b-b' is even. $(a+bi)(a'+b'i) = (aa'-bb') + (ab'+a'b)i \in S$ as ab'+a'b is even.

 $1 + 2i \in S$ and $1 + 1i \in Z[i]$ but $(1 + 1i)(1 + 2i) = -1 + 3i \notin S$ as 3 is not even. A counter-example of S being an ideal.

11

a

 $\langle a \rangle = \langle 1 \rangle = \mathbb{Z}$. We know GCD(2,3) = 1 so by Theorem 0.2 (GCD is a linear combination) (page 4), there are $x, y \in \mathbb{Z}$ such that 2x + 3y = 1. So for any integer m, 2(xm) + 3(ym) = m. In other words, $\mathbb{Z} = \langle 1 \rangle \subset \langle 2 \rangle + \langle 3 \rangle$.

 \mathbf{b}

 $\langle a \rangle = \langle 2 \rangle$. Trivially $\langle 6 \rangle + \langle 8 \rangle \subset \langle 2 \rangle$ as 2 is a common divisor of 6 and 8. Observe 8(1) + 6(-1) = 2. So for any multiple 2m, We have 8(m) + 6(-m) = 2m, concluding $\langle 2 \rangle \subset \langle 8 \rangle + \langle 6 \rangle$.

15

By definition $A \subset R$ and $r = r1 \in A$ for any $r \in R$.

$\mathbf{32}$

Let B be an arbitrary ideal of $\mathbb{Z} \oplus \mathbb{Z}$ such that $A \subset B \subset \mathbb{Z} \oplus \mathbb{Z}$. Assume B properly contains A then we show $B = \mathbb{Z} \oplus \mathbb{Z}$.

By hypothesis we have $(a, b) \in B$ but not in A. So a = 3q + r whereby either r = 1 or r = 2. Consider each case:

- r = 1. Since $A \subset B$, $(3(-q), -(b-1)) \in B$. As B is a group, $(3(-q), -(b-1)) + (3q+1, b) = (1, 1) \in B$.
- r = 2. Similarly $(3(q+1), b+1) \in B$ and $(3(q+1), b+1) (3q+2, b) = (1, 1) \in B$.

By *Ex.* 15 $B = \mathbb{Z} \oplus \mathbb{Z}$.

Had A been $\{(4x, y) \mid x, y \in \mathbb{Z}\}$ then the property of it being a maximal ideal fails as the ideal $\{(2x, y)\}$ is strictly larger.

Generally, $\{(rx, y)\}$ is a maximal ideal if and only if r is a prime. If r is composite then any divisor generates a larger ideal. If r is prime then for any m where 0 < m < r, gcd(r,m) = 1. It follows by *Theorem 0.2* (GCD is a linear combination) (page 4) there is a linear combination xr + ym = 1.

$\mathbf{37}$

If $(x, y), (a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ and $(x, y)(a, b) = (xa, yb) \in I$ then by definition yb = 0. So either y = 0 or b = 0. In other words, either $(x, y) \in I$ or $(a, b) \in I$.

The set $\{(x, 2y) \mid x, y \in Z\}$ is an ideal and properly contains I. So I is not maximal.