
DAOUD SINIORA

Mathematical Logic
Lecture Notes

February 20, 2024

Contents

1 Propositional Logic 1

1.1 Syntax of Propositional Logic . 1

1.1.1 Words over an Alphabet . 1

1.1.2 Propositional Formulas . 3

1.1.3 Proofs by Induction on Formulas 5

1.1.4 Unique Decomposition Theorem 7

1.1.5 Substitutions in Propositional Formulas 12

1.2 Semantics of Propositional Logic . 14

1.2.1 Truth Assignments . 14

1.2.2 Tautologies and Logical Equivalence 19

1.2.3 Disjunctive Normal Form . 24

1.3 Logical Consequence . 31

2 Soundness and Completeness 33

2.1 Proof Systems . 33

2.2 The Deduction Theorem . 37

2.3 The Soundness Theorem . 42

2.4 The Completeness Theorem . 47

2.5 The Compactness Theorem . 53

3 First-Order Logic 55

3.1 First-Order Structures . 55

3.1.1 Languages and Structures . 55

3.1.2 Substructures . 59

3.1.3 Isomorphisms . 60

iii

3.2 Syntax of First-Order Logic . 62

3.2.1 Terms . 62

3.2.2 First-Order Formulas . 64

3.2.3 Free Variables and Bound Variables 67

3.3 Semantics of First-Order Logic . 69

3.3.1 Interpretation of Terms . 69

3.3.2 Satisfaction of Formulas . 70

3.4 First-Order Theories . 74

3.5 Logical Consequence . 78

4 Gödel’s Completeness Theorem 81

4.1 Substitution of Terms for Variables 81

4.2 A Proof System for First-Order Logic 83

4.3 The Soundness Theorem . 87

4.4 The Completeness Theorem . 93

5 Set Theory 99

5.1 Zermelo-Fraenkel Set Theory . 99

5.2 Well-Orderings . 103

5.3 Ordinals and Cardinals . 107

Introduction

The word ‘logic’ originates from the Greek word ‘logos’ which has a variety of

meanings such as reasoning or language. Logic is the study of the laws of thought.

Logic is a precise formal language with exact rules on how to combine symbols to

form sentences. Aristotle (384 - 322 BC) studied rules and patterns that describe

human thinking and reasoning. He focused on a particular type of deductive argument

called syllogism. A syllogism is an argument consisting of three successive assertions:

the first two are the premises and the third is the conclusion. For example:

• Every river contains water.

• The Nile is a river.

• Therefore, the Nile contains water.

Gottfried Leibniz (1646 - 1716) had the dream to reduce human thinking to machine

calculation. In the nineteenth century, logic started to develop as a mathematical

subject by the work of Boole, Cantor, Frege, Peano, and others. In the first

half of the twentieth century the development of mathematical logic progressed by

important new ideas from Russel, Zermalo, Hilbert, Löwenheim, Ramsey, Skolem,

Lusin, Post, Herbrand, Gödel, Tarski, Church, Kleene, Turing, and Gentzen. The

strong motivation for developing mathematical logic was the urge to provide solid

foundations for mathematics. Mathematical logic is now an independent subject of

its own and interacts with other areas of mathematics and computer science. In the

second half of the twentieth century, mathematical logic branched into four main

areas.

Mathematical Logic

Proof Theory

Set Theory Model Theory

Computability Theory

(Recursion Theory)

It is worth mentioning that one distinctive feature of mathematical logic is that

statements about mathematical objects are studied as mathematical objects in their

own right. In the same way we prove theorems about prime numbers, vector spaces,

v

vi CONTENTS

groups, rings, fields, partial orders, graphs, et cetera, we prove theorems about

statements we construct by the exact rules of the logic, such statements are called

formulas. Another distinctive practice in mathematical logic is the formalisation

(formulation in a precise mathematical way) of notions used informally by mathematicians

such as: property, statement in a given natural language, mathematical structure,

truth of a statement in a structure, proof from a given set of axioms, and algorithm.

After defining these notions in a precise mathematical way, we can start proving

theorems about these formalised notions.

For example, let us express some properties and statements about the natural

numbers. The set of natural numbers is N = {0, 1, 2, . . .}, the symbols 0, 1,+, ·, <
denote the usual arithmetic constants, operations, and relations on N, and the

variables range over N. With this has been said, here are examples of formal

statements. To state that a natural number x is even we write ∃y(x = y + y).

And to express that x is prime we write

(1 < x) ∧ ∀y∀z(x = y · z → (y = 1 ∨ z = 1)).

Recall that the Goldbach Conjecture states that every even integer greater than 2

is a sum of two prime numbers. Let E(x) abbreviates “x is even” and let P (x)

abbreviates “x is prime”. Then we can express the Goldbach Conjecture as follows:

∀x ((E(x) ∧ 1 + 1 < x) → ∃y∃z(P (x) ∧ P (y) ∧ x = y + z)) .

A formal system consists of a list of axioms (sentences in a given formal language)

together with a list of deduction rules. Using formal systems we express the notion

of a formal proof. Let Σ be a set of sentences and let σ be a sentence. We say Σ

proves σ, or σ is provable from Σ, and write Σ ⊢ σ, if there is a proof in the formal

system which uses the axioms, deduction rules, and statements from Σ that leads

to σ. We say a mathematical structure M is a model of σ, and write M |= σ, if the

sentence σ is true in M . Moreover, M is a model of Σ, written as M |= Σ, if every

sentence in Σ is true in M . Finally, we say that Σ logically implies σ, and write

Σ |= σ, if σ is true in every model of Σ. Here we have two notions: “provability

from a given set of axioms” and “truth in a given structure”. These notions are

related as described by the results below. Such results are among the most famous

theorems in mathematical logic.

Completeness Theorem (Gödel, 1930). Given a formal language, let Σ be a set

of sentences and let σ be a sentence. Then σ is provable from Σ if and only if σ is

true in all models of Σ. That is,

Σ ⊢ σ if and only if Σ |= σ.

Compactness Theorem (Gödel, Mal’cev). Let Σ be a set of sentences in some

language. Then Σ has a model if and only if every finite subset of Σ has a model.

REFERENCES vii

In the beginning of the twentieth century, the German mathematician David Hilbert

proposed a solution to what is known as the foundational crises of mathematics

where paradoxes and inconsistencies arose in the face of earlier attempts to put

mathematics on strong foundations. Hilbert’s proposal, known as Hilbert’s Program,

was to formulate a finite, complete set of axioms for all theories of mathematics, and

to provide a proof that these axioms are consistent (do not lead to a contradiction).

Hilbert’s famous words that he spoke in a speech in 1930 were:

Wir müssen wissen. Wir werden wissen.

We must know. We will know.

Kurt Gödel played a dramatic role in the progress of Hilbert’s program. In 1931,

he showed that Hilbert’s program was unattainable for vital areas of mathematics.

Gödel’s first incompleteness theorem states that any consistent formal system with

a computable set of axioms which is capable of expressing arithmetic can never be

complete (there will be a sentence which is neither provable from the axioms nor

its negation is provable from the axioms). Gödel’s second incompleteness theorem

states that such a system cannot prove its own consistency.

Incompleteness Theorem (Gödel, 1931). There is a sentence in the language of

arithmetic that is true in the structure (N, 0, 1,+, ·, <), but not provable from the

Peano axioms.

References

[1] René Cori and Daniel Lascar (2000), Translated by Donald Pelletier,

Mathematical Logic: A Course With Exercises, Oxford University Press.

[2] Derek Goldrei (2005), Propositional and Predicate Calculus: A Model of

Argument, Springer-Verlag London.

[3] Jochen Koenigsmann, Logic Course (B1.1) Slides, University of Oxford.

[4] Anand Pillay,Models and Sets (MATH3120) Lecture Notes, University of Leeds.

[5] Lou van den Dries (2019), Mathematical Logic Lecture Notes, University of

Illinois Urbana-Champaign.

[6] A. G. Hamilton (1988), Logic for Mathematicians, Cambridge University Press.

[7] Herbert Enderton (2001), A Mathematical Introduction to Logic, Harcourt/

Academic Press.

[8] Martin Hils and François Loeser (2019), A First Journey through Logic,

American Mathematical Society.

viii REFERENCES

Chapter 1

Propositional Logic

In propositional logic we construct formal strings of symbols called propositional

formulas. The building blocks of formulas are propositional variables, which are

then assembled together according to precise rules using logical connectives such as

negation, conjunction, disjunction, implication, and equivalence. This construction

process of formulas constitute the syntax of propositional logic. On the other part,

the semantics of the logic, we will give meaning to these formulas. We need to decide

whether a formula is true or false based on the truth values of the propositional

variables appearing in the formula. We will see that the truth value of a formula

depends on the formal construction of the formula. We then discuss a semantic and

a syntactic approach to study the notion of a formula being implied from a set of

formulas. The semantic notion is called logical consequence. To define the syntactic

notion we need to introduce proof systems to be able to define a formal derivation

of a formula from a set of formulas. We show that these two notions: logical

consequence and derivability, are equivalent by proving the soundness theorem and

the completeness theorem for propositional logic.

1.1 Syntax of Propositional Logic

1.1.1 Words over an Alphabet

Let A be a nonempty set of symbols, which we will call the alphabet. A word over

the alphabet A is a finite sequence of symbols from A. So a word w has the form

a1 a2 a3 . . . an

where each ai belongs to A and n is a positive integer. The integer n is called

the length of the word w, and we write l[w] = n. Notice that the length of w

is the number of symbols in w counting repetitions. Strictly speaking, a word

w = a1a2 . . . an over A is a function w : {1, 2, . . . , n} → A given by w(i) = ai.

1

2 CHAPTER 1. PROPOSITIONAL LOGIC

There is the empty word which is denoted by λ and has length 0. Two words

w1 = a1a2 . . . an and w2 = b1b2 . . . bm are equal if n = m and ai = bi for every

1 ≤ i ≤ n.

The set of all words is denoted by W(A) or by A∗ (Kleene star). So W(A) is the set

of all finite sequences of symbols from A. Let w1 = a1a2 . . . an and w2 = b1b2 . . . bm
be two words over A. The concatenation of w1 and w2 is the word

w1w2 = a1 a2 . . . an b1 b2 . . . bm.

In other words, the concatenation of w1 and w2 is the word w = w1w2 given by

w(i) =

{
ai if 1 ≤ i ≤ n;

bi−n if n+ 1 ≤ i ≤ n+m.

A word w′ is called an initial segment of a word w if there exists a word w′′ such that

w = w′w′′. Thus, an initial segment of w = a1a2 . . . an is either the empty word or a

word of the form a1a2 . . . ak where 1 ≤ k ≤ n. Clearly, the empty word and w itself

are both initial segments of w. An initial segment of w is called proper if it is different

from w. When a letter α from the alphabet appears in a word w = a1 a2 a3 . . . an,

we say that α has an occurrence in w and the positions where it appears are called

the occurrences of α in w. For example, take the alphabet A = {a, b, c}, and take

the word w = bcabacbaccac. Then the letter a has 4 occurrences in w at positions

3, 5, 8, 11, and the letter b has 3 occurrences in w at positions 1, 4, 7.

Lemma 1.1.1. For all words w, w1, w2, w3, and w4, the following hold.

• l[w1w2] = l[w1] + l[w2].

• (w1w2)w3 = w1(w2w3). (concatenation is associative)

• If ww1 = ww2, then w1 = w2. (left cancellation)

• If w1w = w2w, then w1 = w2. (right cancellation)

• If w1w2 = w3w4, then either w1 is an initial segment of w3 or else w3 is an

initial segment of w1.

• If w1 is an initial segment of w2 and w2 is an initial segment of w1, then

w1 = w2.

• If A is finite or countably infinite, then W(A) is countably infinite.

Remark. The set W(A) of all words over A together with the concatenation

operation form a monoid where the identity element is the empty word.

1.1. SYNTAX OF PROPOSITIONAL LOGIC 3

1.1.2 Propositional Formulas

In this section we introduce the syntax of propositional logic, we describe precisely

how sentences in propositional logic are constructed. Sentences in propositional

logic will be strings of symbols of a certain kind, and they are called propositional

formulas. The symbols we start with are called the alphabet of propositional logic

and they consist of three types of symbols: propositional variables, propositional

connectives, and parentheses. The set P of propositional variables is a nonempty,

finite or infinite, set of symbols. The propositional variables will usually be denoted

by

p, q, r, p0, p1, p2, . . . , q0, q1, . . .

Next, there are five symbols for propositional connectives.

Symbol ¬ ∧ ∨ → ↔
Read as ‘not’ ‘and’ ‘or’ ‘implies’ ‘is equivalent to’

Called negation conjunction disjunction implication equivalence

Arity unary binary binary binary binary

Finally, there are two parentheses symbols.

Symbol) (

Called closing parenthesis opening parenthesis

We assume that the three sets: P, {¬, ∧, ∨, →, ↔}, and {), (} are pairwise

disjoint. The alphabet of propositional logic is thus the set

A = P ∪ {¬, ∧, ∨, →, ↔} ∪ {), (} .

Propositional formulas are special words over the alphabet A. The syntax of

constructing these sentences is as follows.

We define propositional formulas inductively as follows.

(i) Any propositional variable is a propositional formula.

(ii) If φ is a propositional formula, then so is ¬φ.

(iii) If φ and ψ are propositional formulas, then so are (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ),

and (φ↔ ψ).

(iv) Nothing else is a propositional formula.

More precisely we define, by induction, a sequence of subsets of W(A) and then

define the set of all propositional formulas to be the union of this chain of subsets

as shown below.

4 CHAPTER 1. PROPOSITIONAL LOGIC

Definition.

• We set F0 = P.

• For each natural number n, we define

Fn+1 = Fn ∪ {¬φ | φ ∈ Fn} ∪ {(φ ∧ ψ) | φ, ψ ∈ Fn} ∪ {(φ ∨ ψ) | φ, ψ ∈ Fn}
∪ {(φ→ ψ) | φ, ψ ∈ Fn} ∪ {(φ↔ ψ) | φ, ψ ∈ Fn}.

• We define the set F of all propositional formulas to be

F =
⋃
n∈N

Fn.

Remark. Observe that F0 ⊆ F1 ⊆ F2 ⊆ · · · .

The logical connectives induce operations (functions) on the set W(A) of all words

over the alphabet of propositional logic. The operation associated with the negation

symbol is ¬ : W(A) → W(A) given by

w 7→ ¬w

for any word w ∈ W(A).

Moreover, there are four more operations from the set W(A) × W(A) to the set

W(A); one for each binary logical connective. These functions are given by:

[w, v] 7→ (w ∧ v)
[w, v] 7→ (w ∨ v)
[w, v] 7→ (w → v)

[w, v] 7→ (w ↔ v)

for every pair [w, v] of words over A. A subset V ⊆ W(A) is said to be closed

under taking a logical symbol if it is closed under the operation associated with that

symbol. For instance, V is closed under taking negations if whenever w ∈ V , then
the word ¬w belongs to V as well. And V is closed under taking conjunctions if

whenever w, v ∈ V , then the word (w ∧ v) belongs to V as well.

Theorem 1.1.2. The set F of all propositional formulas is the smallest subset

of W(A) which contains P and is closed under taking negations, conjunctions,

disjunctions, implications, and equivalences.

Proof. Let S be the smallest subset of W(A) which contains P and is closed under

taking the propositional connectives. This means that if X is a subset of W(A)

which contains P and is closed under taking the propositional connectives, then

S ⊆ X.

1.1. SYNTAX OF PROPOSITIONAL LOGIC 5

Clearly, F contains P. Suppose φ, ψ ∈ F , then there arem,n ∈ N such that φ ∈ Fm

and ψ ∈ Fn. By definition, ¬φ ∈ Fm+1, and so ¬φ ∈ F . Thus F is closed under

taking negations. Let k = max(m,n). Then (φ∧ψ), (φ∨ψ), (φ→ ψ), and (φ↔ ψ)

all belong to Fk+1, and so they belong to F . Therefore, F contains P and is closed

under taking the propositional connectives. It follows that S ⊆ F .

Next, we show by induction that F ⊆ S. As S contains P, it follows that F0 ⊆ S.
Now suppose that Fn ⊆ S. Since S is closed under taking the propositional

connectives, it follows that every formula in Fn+1 belongs to S. Thus, Fn+1 ⊆ S.
Therefore, we have shown that Fn ⊆ S for every n ∈ N. It follows that F ⊆ S as

desired. Therefore, F = S. ■

Definition. The height of a formula φ ∈ F is the least integer n such that φ ∈ Fn.

The height of φ is denoted by h[φ].

Example. Let p and q be propositional variables.

• h[p] = 0.

• h[((p ∧ q) ∧ p)] = 2.

• h[¬¬¬¬p] = 4.

• Let φ := ((p ∨ q) ∧ (q → p)). Then h[φ] = 2. ♠

Remark.

• The set Fn is the set of propositional formulas of height at most n.

• The set Fn+1 \ Fn is the set of all formulas of height exactly n+ 1.

• For any formula φ, we have h[¬φ] ≤ h[φ] + 1.

• For any formulas φ and ψ, we have h[(φ ⋄ ψ)] ≤ max(h[φ], h[ψ]) + 1,

where ⋄ denotes any of the binary propositional connectives.

1.1.3 Proofs by Induction on Formulas

Suppose we want to show that every propositional formula φ has property Y . To

achieve this we use mathematical induction on the height of the formula φ.

• Base case. Show that every formula in F0 has property Y .

• Induction step. Fix some natural number n. Suppose that every formula

belonging to Fn has property Y . Then show that property Y holds for every

formula belonging to Fn+1.

6 CHAPTER 1. PROPOSITIONAL LOGIC

Alternatively, we may proceed as follows.

Lemma 1.1.3 (Induction on formulas). To show that every propositional formula

has property Y, it is sufficient to show the following.

(i) Every propositional variable in P has property Y.

(ii) Whenever a formula φ satisfies property Y, then so does the formula ¬φ.

(iii) Whenever formulas φ and ψ satisfy property Y, then so do the formulas (φ∧ψ),
(φ ∨ ψ), (φ→ ψ), and (φ↔ ψ).

Proof. Suppose that the three conditions in the statement are satisfied. Let X be

the set of formulas which have property Y . In other words,

X = {φ ∈ F | φ has property Y } .

So X ⊆ F . Moreover, by condition (i) we get that P ⊆ X. By condition (ii) , the

set X is closed under taking negations. By condition (iii), the set X is closed under

taking conjunctions, disjunctions, implications, and equivalences. By Theorem 1.1.2,

F ⊆ X. Therefore, X = F , that is, every formula has property Y . ■

Theorem 1.1.4. The height of a formula is always strictly less than its length. That

is, for any propositional formula φ, we have that

h[φ] < l[φ].

Proof. Let us say that a formula φ has property Y when its height is strictly less than

its length. We need to show that every formula φ has property Y . We proceed by

induction on the formulas. We first show that this property holds for propositional

variables. Let p ∈ P. As p ∈ F0, we get that h[p] = 0. Clearly, l[p] = 1. So

h[p] < l[p]; the inequality is verified for p.

Now suppose that φ is a formula that satisfies h[φ] < l[φ]. Then,

h[¬φ] ≤ h[φ] + 1 < l[φ] + 1 = l[¬φ].

This shows that ¬φ has property Y .

Next, suppose that φ and ψ are formulas that satisfy h[φ] < l[φ] and h[ψ] < l[ψ].

And let ⋄ be one of the binary propositional connectives. Then,

h[(φ ⋄ ψ)] ≤ max(h[φ], h[ψ]) + 1 ≤ h[φ] + h[ψ] + 1 < l[φ] + l[ψ] + 3 = l[(φ ⋄ ψ)].

Thus, the formula (φ ⋄ ψ) satisfies property Y and the proof is finished. ■

Corollary 1.1.5. The empty word is not a formula. The only formulas of length 1

are the propositional variables.

1.1. SYNTAX OF PROPOSITIONAL LOGIC 7

1.1.4 Unique Decomposition Theorem

Lemma 1.1.6. For any propositional formula θ ∈ F , exactly one of the following

three cases arises:

(i) θ is a propositional variable.

(ii) There exists a formula φ such that θ = ¬φ.

(iii) There are formulas φ and ψ and a binary connective ⋄ such that θ = (φ ⋄ ψ).

Proof. First observe that no two cases can arise at the same time because the first

symbol of case 1 is a propositional variable, the first symbol of case 2 is the negation

symbol ¬, and the first symbol of case 3 is the opening parenthesis (.

Now let θ be a formula and so θ ∈ F . If θ ∈ F0, then θ is a propositional variable,

and this is the first case. Otherwise, if θ /∈ F0, there exists a natural number n such

that θ ∈ Fn+1 \Fn. By definition of Fn+1 and since θ /∈ Fn, either there is a formula

φ ∈ Fn such that θ = ¬φ and so the second case arises, or else there are formulas

φ, ψ ∈ Fn and a binary connective ⋄ such that θ = (φ ⋄ ψ) and so the third case

occurs. ■

Lemma 1.1.7. For any w ∈ W(A), if w is not a formula, then neither is ¬w.

Proof. We will show the contrapositive. Let w be a word over the alphabet A, and

suppose that ¬w is a formula. Thus, one of the three cases of Lemma 1.1.6 must

occur. As the first symbol of ¬w is the negation symbol ¬, it follows that ¬w is

neither a propositional variable nor a formula of the form (φ⋄ψ). Therefore, it must

be the case that there is a formula θ ∈ F such that ¬w = ¬θ. By left cancellation,

it follows that w = θ, which shows that w is a formula. ■

The tree below is called a decomposition tree of the formula at the very top (the

root of the tree). The tree shows the steps of constructing that formula, and we can

see that the height of that formula is at most 5. Here, 5 is the length of a longest

branch from a leaf to the root.

8 CHAPTER 1. PROPOSITIONAL LOGIC

(
((p ∧ (¬q → ¬p)) ∧ (¬q ∨ ¬r)) → (r → ¬p)

)

((p ∧ (¬q → ¬p)) ∧ (¬q ∨ ¬r))

(p ∧ (¬q → ¬p))

p (¬q → ¬p)

¬q

q

¬p

p

(¬q ∨ ¬r)

¬q

q

¬r

r

(r → ¬p)

r ¬p

p

The decomposition tree above shows that the word w given by the sequence

(((p ∧ (¬q → ¬p)) ∧ (¬q ∨ ¬r)) → (r → ¬p))

is a formula because it was obtained by starting from the propositional variables p,

q, and r (see the leaves of the tree), and then by applying propositional connectives

(as in the definition of F) finitely many times. The tree shows that w ∈ F5 and so

w is a formula and h[w] ≤ 5. At this point, we feel hesitant to claim that h[w] = 5,

as there may be another decomposition which constructs the formula w in F4 or

even before.

One can prove by induction on formulas that any formula has a decomposition tree.

Here is an informal discussion. By definition of a formula, a word θ is a formula if

it belongs to the set F . Since F =
⋃
n∈N

Fn, we can find the least natural number n

such that θ ∈ Fn. If n = 0, then θ is a propositional variable (a leaf of the tree).

Otherwise, n ≥ 1 and so by definition of Fn, either there is a formula φ ∈ Fn−1

such that θ = ¬φ (in such case there will be one branch leaving θ to φ in the level

below) or else there are formulas φ, ψ ∈ Fn−1 and a binary connective ⋄ such that

θ = (φ ⋄ ψ) (here there are two branches leaving θ, one to φ and the other to ψ in

the level below). Then we repeat this to the new shorter formulas until all the leaves

of the tree are propositional variables. Soon we will show that such a decomposition

tree is unique.

Let w be a word in W(A). We denote by o[w] the number of opening parentheses

that occur in w. Similarly, we denote by c[w] the number of closing parentheses that

occur in w.

Theorem 1.1.8. In any propositional formula, the number of opening parentheses

is equal to the number of closing parentheses.

1.1. SYNTAX OF PROPOSITIONAL LOGIC 9

Proof. We proceed by induction on the formulas. Let p be any propositional variable.

Then o[p] = 0 = c[p].

Suppose that φ is a formula such that o[φ] = c[φ]. Then,

o[¬φ] = o[φ] = c[φ] = c[¬φ].

Suppose that φ and ψ are formulas such that o[φ] = c[φ] and o[ψ] = c[ψ]. Let ⋄ be

any symbol of the binary propositional connectives. Then,

o[(φ ⋄ ψ)] = 1 + o[φ] + o[ψ] = 1 + c[φ] + c[ψ] = c[(φ ⋄ ψ)].

Therefore, we have shown that o[φ] = c[φ] for any propositional formula φ. ■

Theorem 1.1.9. For any formula φ in F and any word w in W(A), if w is an

initial segment of φ, then o[w] ≥ c[w].

Proof. We proceed by induction on the formulas. Let p be any propositional variable

and let w be an initial segment of p. It follows that w is either the empty word or

p itself. In each case, we have o[w] = 0 and c[w] = 0. So o[w] ≥ c[w].

Let φ be a formula such that every initial segment w of φ satisfies o[w] ≥ c[w]. Now

let v be an initial segment of ¬φ.

• If v = λ (the empty word), then o[λ] = 0 and c[λ] = 0. So o[v] ≥ c[v].

• If v is not the empty word, then v = ¬w for some initial segment w of φ. It

follows that

o[v] = o[¬w] = o[w] ≥ c[w] = c[¬w] = c[v].

Suppose that φ and ψ are formulas such that all of their initial segments have at

least as many opening parentheses as closing parentheses. Let ⋄ be any of the binary

propositional connectives. Now choose any initial segment v of (φ ⋄ ψ). Four cases
can arise.

• If v = λ, then o[λ] = 0 and c[λ] = 0. So o[v] ≥ c[v].

• If v = (w for some initial segment w of φ. It follows that

o[v] = o[(w] = 1 + o[w] > o[w] ≥ c[w] = c[(w] = c[v].

• If v = (φ ⋄ w′ for some initial segment w′ of ψ. It follows that

o[v] = o[(φ ⋄ w′] = 1 + o[φ] + o[w′] > o[φ] + o[w′] ≥ c[φ] + c[w′] = c[v].

• If v = (φ ⋄ ψ), then o[v] = c[v] because v is a formula in this case.

10 CHAPTER 1. PROPOSITIONAL LOGIC

Thus in all cases we got that o[v] ≥ c[v]. ■

Lemma 1.1.10. Suppose that θ is a formula of the form (φ ⋄ ψ) where φ and ψ

are arbitrary formulas and ⋄ is a symbol from the binary propositional connectives.

Then, for every word w ∈ W(A) which is a nonempty proper initial segment of θ,

we have that

o[w] > c[w].

Theorem 1.1.11. For any formula φ ∈ F and for any word w ∈ W(A), if w is an

initial segment of φ different from φ, then w is not a formula.

Proof. We have seen previously that the empty word is not a formula. It remains to

show that any nonempty proper initial segment of a formula is not a formula. We

proceed by induction on the formulas.

Propositional variables have no nonempty proper initial segments.

Suppose that φ is a formula such that every nonempty proper initial segment of φ

is not a formula. Let w be a nonempty proper initial segment of ¬φ. It follows that
either w = ¬ which is not a formula because the only formulas of length 1 are the

propositional variables or w = ¬v where v is a nonempty proper initial segment of

φ. By induction hypothesis, v is not a formula, and so by Lemma 1.1.7, ¬v is not

a formula as well. So w is not a formula.

Lastly, suppose that φ and ψ are formulas. Let w be a nonempty proper initial

segment of (φ ⋄ ψ) where ⋄ is a binary propositional connective. By Lemma 1.1.10,

we get that o[w] > c[w]. We conclude that w is not a formula because if it were we

must have o[w] = c[w] by Theorem 1.1.8. ■

Theorem 1.1.12 (Unique decomposition theorem). For any formula θ ∈ F , exactly

one of the following three cases arises:

(i) θ is a propositional variable.

(ii) There is a unique formula φ such that θ = ¬φ.

(iii) There are unique formulas φ and ψ and a unique binary connective ⋄ such

that θ = (φ ⋄ ψ).

Proof. By Lemma 1.1.6, it remains to show the uniqueness of the decomposition in

case 2 and case 3.

For case 2, suppose that θ = ¬φ and θ = ¬φ′ for some formulas φ and φ′. Thus, we

have that ¬φ = ¬φ′. By left cancellation, it follows that φ = φ′.

For case 3, suppose that θ = (φ ⋄ ψ) and θ = (φ′ △ ψ′) where φ, ψ, φ′, and ψ′ are

formulas and ⋄ and △ are binary connectives. Therefore, we get (φ⋄ψ) = (φ′ △ ψ′).

By left and right cancellation, we get φ ⋄ ψ = φ′ △ ψ′. We conclude that one of

1.1. SYNTAX OF PROPOSITIONAL LOGIC 11

the formulas φ and φ′ is an initial segment of the other. Since both φ and φ′ are

formulas, by Theorem 1.1.11, it must be that φ = φ′. Since φ ⋄ ψ = φ′ △ ψ′ and

φ = φ′, by left cancellation, it follows that ⋄ψ =△ ψ′. We conclude that the first

symbol of the word ⋄ψ is identical to the first symbol of the word △ ψ′, so ⋄ and △
are identical. This forces ψ and ψ′ to be identical as well. ■

Corollary 1.1.13. The decomposition tree of any formula is unique.

Corollary 1.1.14. Let φ and ψ be propositional formulas. Then

• h[¬φ] = h[φ] + 1.

• h[(φ ⋄ ψ)] = max (h[φ], h[ψ]) + 1.

Proof. We prove the second equality. Let θ = (φ ⋄ψ). Since θ is not a propositional

variable, it follows that h[θ] = n + 1 for some natural number n. This means that

θ ∈ Fn+1 but θ /∈ Fn. By definition of Fn+1 and since θ begins with an opening

parenthesis, there are formulas φ′ and ψ′ in Fn and a binary connective △ such that

θ = (φ′ △ ψ′). The unique decomposition theorem implies that φ = φ′, ψ = ψ′, and

⋄ =△. Thus, both φ and ψ belong to Fn.

Claim. h[φ] = n or h[ψ] = n.

Proof of the claim. Since φ, ψ ∈ Fn, it follows that h[φ] ≤ n and h[ψ] ≤ n. If n = 0,

then all formulas in F0 have height 0, and we are done. Otherwise, suppose n ≥ 1,

and for the sake of contradiction assume that h[φ] < n and h[ψ] < n. It follows that

φ and ψ belong to Fn−1, and consequently θ would belong to Fn, a contradiction!

It follows that h[φ] = n or h[ψ] = n establishing the claim. □

By the claim we conclude that max(h[φ], h[ψ]) = n. Therefore, we have that

h[(φ ⋄ ψ)] = h[θ] = n+ 1 = max(h[φ], h[ψ]) + 1, as desired. ■

The following definition is an example of “definition by induction”.

Definition. For each propositional formula θ ∈ F we associate a set sf[θ], called

the set of subformulas of θ, as follows.

• If θ is a propositional variable, then sf[θ] = {θ}.

• If θ = ¬φ for some formula φ, then sf[θ] = sf[φ] ∪ {θ}.

• If θ = (φ ⋄ ψ) for some formulas φ and ψ, then sf[θ] = sf[φ] ∪ sf[ψ] ∪ {θ}.

Remark. Every subformula is itself a formula. The subformulas of a formula θ are

exactly the nodes that appear in the decomposition tree of θ.

12 CHAPTER 1. PROPOSITIONAL LOGIC

Example. Let θ = ((p ∧ q) ↔ (q → r)). Then θ has 6 subformulas, here are they:

sf[θ] = sf[((p ∧ q) ↔ (q → r))]

= sf[(p ∧ q)] ∪ sf[(q → r)] ∪ {((p ∧ q) ↔ (q → r))}
= sf[p] ∪ sf[q] ∪ {(p ∧ q)} ∪ sf[q] ∪ sf[r] ∪ {(q → r)} ∪ {((p ∧ q) ↔ (q → r))}
= {p} ∪ {q} ∪ {(p ∧ q)} ∪ {q} ∪ {r} ∪ {(q → r)} ∪ {((p ∧ q) ↔ (q → r))}
= {p, q, r, (p ∧ q), (q → r), ((p ∧ q) ↔ (q → r))}. ♠

1.1.5 Substitutions in Propositional Formulas

Let φ be a propositional formula and let p1, p2, . . . , pn be propositional variables

that are pairwise distinct. We will use the notation φ(p1, p2, . . . , pn) to say that the

propositional variables that occur in φ are among p1, p2, . . . , pn. In other words,

the formula φ has no propositional variables other than p1, p2, . . . , pn. For example,

for the formula φ = (p → (q ∨ p)) we could write φ(p, q), but also we may write

φ(p, q, r, s) or φ(t, v, p, q, r, s).

Suppose we are given a formula φ(p1, p2, . . . , pn) together with formulas ψ1, ψ2, . . . , ψn.

We form a new word by substituting the formula ψi for every occurrence of the

variable pi in the formula φ. We substitute the formulas ψ1, ψ2, . . . , ψn for the

variables p1, p2, . . . , pn in the formula φ simultaneously. The resultant word is

denoted by

φ
(
ψ1/p1, ψ2/p2, . . . , ψn/pn

)
and it is read as “φ where ψ1 replaces p1, ψ2 replaces p2, and so on, ψn replaces pn”.

We may also denote the new word by φ(ψ1, ψ2, . . . , ψn).

Example.

• Let θ = (p ∧ q), ψ1 = (p ∨ q), and ψ2 = (p → q). Then θ(ψ1/p, ψ2/q) or

θ(ψ1, ψ2) is the word

((p ∨ q) ∧ (p→ q)).

• Consider the formula φ = φ(p, q) = (p→ (q∨p)) and the formula ψ = (q → p).

Then φ(ψ/p, q), or simply φ(ψ, q), is the word

((q → p) → (q ∨ (q → p))).

For a propositional variable r, the word φ(r/p, q), or φ(r, q), is (r → (q ∨ r)).
Finally, the word φ(ψ/p, r/q), or φ(ψ, r), is

((q → p) → (r ∨ (q → p))).

♠

1.1. SYNTAX OF PROPOSITIONAL LOGIC 13

By the above example one can feel that the word obtained after substituting formulas

for propositional variables in a formula is itself a formula.

Theorem 1.1.15. Given a propositional formula φ(p1, p2, . . . , pn) and propositional

formulas ψ1, ψ2, . . . , ψn, the word φ
(
ψ1/p1, ψ2/p2, . . . , ψn/pn

)
is a formula as well.

Proof. Fix formulas ψ1, ψ2, . . . , ψn and propositional variables p1, p2, . . . , pn. We

prove the theorem by induction on the formula φ(p1, p2, . . . , pn).

• If φ ∈ P, then either φ = pi for some 1 ≤ i ≤ n or φ /∈ {p1, p2, . . . , pn}.
In the former case φ(ψ1/p1, ψ2/p2, . . . , ψn/pn) = ψi, and in the latter case

φ(ψ1/p1, ψ2/p2, . . . , ψn/pn) = φ. In both cases this is a formula.

• If φ = ¬θ and θ(ψ1/p1, ψ2/p2, . . . , ψn/pn) is a formula, then

φ(ψ1/p1, ψ2/p2, . . . , ψn/pn) = ¬θ(ψ1/p1, ψ2/p2, . . . , ψn/pn)

is again a formula.

• If φ = (θ ⋄ χ) and both θ(ψ1/p1, . . . , ψn/pn) and χ(ψ1/p1, . . . , ψn/pn) are

formulas, then

φ(ψ1/p1, . . . , ψn/pn) = (θ(ψ1/p1, . . . , ψn/pn) ⋄ χ(ψ1/p1, . . . , ψn/pn))

is again a formula.

■

14 CHAPTER 1. PROPOSITIONAL LOGIC

1.2 Semantics of Propositional Logic

1.2.1 Truth Assignments

Definition. A truth assignment is a function from the set of propositional variables

P to the set {0, 1}.

A truth assignment is also called an ‘assignment of truth values’, ‘distribution of

truth values’, ‘valuation’, or ‘evaluation’. Intuitively, one may think of 0 as false,

and of 1 as true. We call 0 and 1 truth values. It is possible, as we shall see, to

extend a truth assignment to the set F of all propositional formulas in one and only

one way while agreeing with our mathematical intuition of the names we have given

to the symbols for propositional connectives.

In particular, for any formulas φ and ψ we intend to satisfy the following. For

the negation connective: we want ¬φ to be true exactly when φ is false. For the

conjunction connective: (φ∧ψ) is true exactly when both φ and ψ are true. For the

disjunction connective: (φ ∨ ψ) is false exactly when both φ and ψ are false. For

the implication connective: (φ → ψ) is false exactly when φ is true and ψ is false.

For the equivalence connective: (φ ↔ ψ) is true exactly when both φ and ψ have

the same truth value.

Given functions f and g, we say that g is an extension of f if dom(f) ⊆ dom(g)

and f(a) = g(a) for all a ∈ dom(f), that is, g agrees with f on its domain.

Theorem 1.2.1. Any truth assignment δ : P → {0, 1} admits a unique extension

δ̂ : F → {0, 1} satisfying the following conditions for all formulas φ and ψ:

(i) δ̂[¬φ] = 1 if and only if δ̂[φ] = 0;

(ii) δ̂[(φ ∧ ψ)] = 1 if and only if δ̂[φ] = 1 and δ̂[ψ] = 1;

(iii) δ̂[(φ ∨ ψ)] = 0 if and only if δ̂[φ] = 0 and δ̂[ψ] = 0;

(iv) δ̂[(φ→ ψ)] = 0 if and only if δ̂[φ] = 1 and δ̂[ψ] = 0;

(v) δ̂[(φ↔ ψ)] = 1 if and only if δ̂[φ] = δ̂[ψ].

Proof. Given a truth assignment δ : P → {0, 1}, we will define an extension δ̂

inductively on formulas as described below. The set {0, 1} is equipped with addition

and multiplication modulo 2. We will use these arithmetic operations to express the

conditions stated in the theorem.

We start by defining the value of δ̂ on propositional variables. For every propositional

variable p ∈ P we define δ̂[p] = δ[p]. So δ̂ agrees with δ on P.

1.2. SEMANTICS OF PROPOSITIONAL LOGIC 15

Next suppose that φ is formula where the value δ̂[φ] was defined. We define

δ̂[¬φ] = 1 + δ̂[φ].

This ensures that condition (i) is satisfied by δ̂.

Now suppose that φ and ψ are formulas where the values δ̂[φ] and δ̂[ψ] were defined.

We define the following.

• δ̂[(φ ∧ ψ)] = δ̂[φ] · δ̂[ψ];

• δ̂[(φ ∨ ψ)] = δ̂[φ] + δ̂[ψ] + δ̂[φ] · δ̂[ψ];

• δ̂[(φ→ ψ)] = 1 + δ̂[φ] + δ̂[φ] · δ̂[ψ];

• δ̂[(φ↔ ψ)] = 1 + δ̂[φ] + δ̂[ψ].

This ensures that conditions (ii), (iii), (iv), and (v) are satisfied by δ̂. Thus, δ̂[φ]

is now defined for every formula φ ∈ F . This proves that δ̂ : F → {0, 1} is an

extension of δ : P → {0, 1} satisfying the five conditions.

Next we prove that δ̂ is unique. Towards this end, suppose that λ : F → {0, 1} is

a function which extends δ : P → {0, 1} and satisfies the five conditions. We will

show that δ̂ = λ, that is, we need to show that δ̂[φ] = λ[φ] for every formula φ ∈ F .

We will proceed by induction on formulas.

Suppose that p ∈ P is a propositional variable. Then δ̂[p] = δ[p] = λ[p] since both

δ̂ and λ agree with δ on P.

Next suppose that φ is formula where δ̂[φ] = λ[φ]. Since both δ̂ and λ satisfy

condition (i) we get that

δ̂[¬φ] = 1 + δ̂[φ] = 1 + λ[φ] = λ[¬φ].

Next suppose that φ and ψ are formula where δ̂[φ] = λ[φ] and δ̂[ψ] = λ[ψ]. Since

both δ̂ and λ satisfy condition (ii) we get that

δ̂[(φ ∧ ψ)] = δ̂[φ] · δ̂[ψ] = λ[φ] · λ[ψ] = λ[(φ ∧ ψ)].

Since both δ̂ and λ satisfy condition (iii) we get that

δ̂[(φ ∨ ψ)] = δ̂[φ] + δ̂[ψ] + δ̂[φ] · δ̂[ψ] = λ[φ] + λ[ψ] + λ[φ] · λ[ψ] = λ[(φ ∨ ψ)].

Since both δ̂ and λ satisfy condition (iv) we get that

δ̂[(φ→ ψ)] = 1 + δ̂[φ] + δ̂[φ] · δ̂[ψ] = 1 + λ[φ] + λ[φ] · λ[ψ] = λ[(φ→ ψ)].

Since both δ̂ and λ satisfy condition (v) we get that

δ̂[(φ↔ ψ)] = 1 + δ̂[φ] + δ̂[ψ] = 1 + λ[φ] + λ[ψ] = λ[(φ↔ ψ)].

Therefore, by induction on formulas, we have shown that δ̂[φ] = λ[φ] for every

formula φ ∈ F . That is, δ̂ = λ, and so δ̂ is unique. ■

16 CHAPTER 1. PROPOSITIONAL LOGIC

Another way to express the above five conditions is by tables called the truth tables.

Negation Truth Table

φ ¬φ
1 0

0 1

Conjunction Truth Table

φ ψ (φ ∧ ψ)
1 1 1

1 0 0

0 1 0

0 0 0

Disjunction Truth Table

φ ψ (φ ∨ ψ)
1 1 1

1 0 1

0 1 1

0 0 0

Implication Truth Table

φ ψ (φ→ ψ)

1 1 1

1 0 0

0 1 1

0 0 1

Equivalence Truth Table

φ ψ (φ↔ ψ)

1 1 1

1 0 0

0 1 0

0 0 1

From now on we will not make a distinction between a truth assignment and its

unique extension to the set of all formulas.

Definition. Let δ : F → {0, 1} be a truth assignment and let φ be a formula.

• We say δ satisfies φ if δ[φ] = 1. We also say φ is satisfied by δ for this.

• We say φ is satisfiable if there is some truth assignment which satisfies φ.

Given a truth assignment δ : P → {0, 1} and a formula φ ∈ F , how to find the truth

value δ[φ] using the unique extension of δ? Well, we first find all subformulas of φ.

The truth assignment δ tells us the truth value of all propositional variables in φ, and

these are the subformulas of height 0. Then we use the conditions in the definition

of the unique extension of δ to compute the truth values of all subformulas of height

1. Then we use the conditions again to find the truth value of all subformulas of

height 2, and so on, until we get the truth value of φ, which is denoted by δ[φ].

Example. Let δ : {p, q, r} → {0, 1} be a truth assignment given by δ[p] = 0,

δ[q] = 0, and δ[r] = 1. Find the truth value of

φ = ((p→ q) → (q ∨ (p↔ r)))

1.2. SEMANTICS OF PROPOSITIONAL LOGIC 17

under the unique extension of δ. First observe that

sf[φ] = {p, q, r, (p→ q), (p↔ r), (q ∨ (p↔ r)), ((p→ q) → (q ∨ (p↔ r)))}.

• Truth values of subformulas of height 0.

δ[p] = 0, δ[q] = 0, δ[r] = 1.

• Truth values of subformulas of height 1.

δ[(p→ q)] = 1, δ[(p↔ r)] = 0.

• Truth values of subformulas of height 2.

δ[(q ∨ (p↔ r))] = 0.

• Truth values of subformulas of height 3.

δ[φ] = δ[((p→ q) → (q ∨ (p↔ r)))] = 0.

Thus, δ does not satisfy φ. Is φ satisfiable? ♠

Example. Let δ : {p, q, r} → {0, 1} be a truth assignment given by δ[p] = 0,

δ[q] = 0, and δ[r] = 1. Find the truth value of

θ = (p→ (((q ∧ ¬p) ∨ (¬r ∧ p)) ↔ (p ∨ (p→ ¬q)))).

Observe that θ is of the form (p→ ψ) where ψ = (((q∧¬p)∨(¬r∧p)) ↔ (p∨(p→ ¬q))).
Since δ[p] = 0, it follows that δ[θ] = 1, without the necessity of computing the truth

values of all subformulas of θ. Thus, θ is satisfiable. ♠

Lemma 1.2.2. For any truth assignments δ and λ and any formula φ(p1, p2, . . . , pn),

if δ and λ agree on the set {p1, p2, . . . , pn}, then δ[φ] = λ[φ].

Proof. By induction on the formulas. ■

The lemma above tells us that when we want to investigate the truth value of a

particular formula φ(p1, p2, . . . , pn) under all truth assignments, it is sufficient to

assume that the domain of the truth assignment in hand is the set {p1, p2, . . . , pn}
instead of the set P of all propositional variables. There are then finitely many truth

assignments to consider, namely, all functions from {p1, p2, . . . , pn} to {0, 1}. There
are 2n many such functions. Each truth assignment δ : {p1, p2, . . . , pn} → {0, 1} can

be expressed as an n-tuple of the form:(
δ[p1], δ[p2], . . . , δ[pn]

)
.

We then can make a table, called a truth table, that presents the truth value

of φ under each of the 2n different truth assignments. For each one of the 2n

truth assignments there will be a row corresponding to it that also contains the

corresponding truth value of φ and possibly other subformulas of φ.

18 CHAPTER 1. PROPOSITIONAL LOGIC

Example. Find the truth table of the formula

ψ = ψ(p, q, r) = ((q ∨ (¬r ∧ p)) ↔ (p→ ¬q)).

p q r ¬q ¬r (¬r ∧ p) (p→ ¬q) (q ∨ (¬r ∧ p)) ψ

1 1 1 0 0 0 0 1 0

1 1 0 0 1 1 0 1 0

1 0 1 1 0 0 1 0 0

1 0 0 1 1 1 1 1 1

0 1 1 0 0 0 1 1 1

0 1 0 0 1 0 1 1 1

0 0 1 1 0 0 1 0 0

0 0 0 1 1 0 1 0 0

The second row in the table above says that the truth assignment δ : {p, q, r} → {0, 1}
given by δ[p] = 1, δ[q] = 1, and δ[r] = 0 would assign the value 0 to the formula ψ.

So ψ is not satisfied by δ. Note that we can express δ as the tuple (1, 1, 0). However,

ψ is satisfiable because it is satisfied by the truth assignment λ represented by the

tuple (1, 0, 0). ♠

In general, there are different truth tables for the same formula, for example, we

may consider truth tables which involve propositional variables that do not occur

in the formula or we may change the order of the rows in the table (there are

(2n)! many ways to put the 2n rows one after the other). We will restrict ourselves

to truth tables which only contain propositional variables that occur at least once

in the formula. Additionally, we will include a column for every subformula of

the formula. Furthermore, we will arrange the rows in decreasing order according

to the lexicographical order (the ‘dictionary’ order): for binary strings we declare

(a1, a2, . . . , an) < (b1, b2, . . . , bn) if ak < bk where k is the least such that ak ̸= bk.

Consequently, we can speak of “the truth table” of a formula.

Observe that the truth table of a formula φ(p1, p2, . . . , pn) is a function

fφ : {0, 1}n → {0, 1}.

The domain {0, 1}n of fφ is the set of all truth assignments δ : {p1, p2, . . . , pn} → {0, 1}
since we can think of δ as an n-tuple of 0s and 1s. For every δ in {0, 1}n we

have that fφ[δ] = δ[φ]. So every formula φ(p1, p2, . . . , pn) gives rise to a function

fφ : {0, 1}n → {0, 1}. Conversely, given any function f : {0, 1}n → {0, 1}, one
can show that there exists a formula φ (in disjuntive normal form: disjunctions of

conjunctions of propositional variables and their negations) such that f = fφ. In

other words, any function f : {0, 1}n → {0, 1} is the truth table of some formula

φ(p1, p2, . . . , pn).

1.2. SEMANTICS OF PROPOSITIONAL LOGIC 19

Boolean Satisfiability Problem (SAT)

Given a formula φ(p1, p2, . . . , pn), the problem is to decide whether φ is

satisfiable or not. Well, we can check if any of the 2n different truth

assignments satisfies φ. The question is: how long it takes to find that truth

assignment in terms of the length of the formula?

If a truth assignment δ is known, then it is faster to decide whether δ satisfies

φ or not; so SAT is an NP (nondeterministic polynomial time) problem.

However, to search for a suitable truth assignment is seemingly an exponential

search. Is there a polynomial-time (P) algorithm to find a truth assignment

which satisfies φ? That’s the big question!

SAT is a very important problem in computer science, it is NP-complete, and

so resolving it would solve the famous “P versus NP” problem in the field

of complexity theory. The P vs. NP problem is one of the Clay Millennium

Problems and it carries a prize worth of one million US dollars.

1.2.2 Tautologies and Logical Equivalence

Definition.

• A propositional formula φ is called a tautology if for every truth assignment

δ : P → {0, 1} we have δ[φ] = 1.

• The notation for φ being a tautology is |= φ.

• A propositional formula φ is called a contradiction if for every truth assignment

δ : P → {0, 1} we have δ[φ] = 0.

• Given two propositional formulas φ and ψ, we say that φ is logically equivalent

to ψ if for every truth assignment δ : P → {0, 1} we have δ[φ] = δ[ψ].

• We write φ ≡ ψ when φ is logically equivalent to ψ.

A tautology is a formula which is always true. A tautology is therefore a formula

whose truth table contains only 1s in the column corresponding to the formula.

Similarly, a contradiction is always false; the column corresponding to a contradiction

contains only 0s. Two logically equivalent formulas have identical truth tables.

Any formula logically equivalent to a tautology is itself a tautology. Similarly, any

formula logically equivalent to a contradiction is itself a contradiction.

Lemma 1.2.3. Let φ and ψ be propositional formulas. Then the following hold.

• If φ ≡ ψ, then ¬φ ≡ ¬ψ.

• φ ≡ ψ if and only if |= (φ↔ ψ).

20 CHAPTER 1. PROPOSITIONAL LOGIC

Lemma 1.2.4. The logical equivalence relation is an equivalence relation on the set

F of all propositional formulas. In other words,

• (Reflexivity). For any φ ∈ F we have φ ≡ φ.

• (Symmetry). For any φ, ψ ∈ F we have if φ ≡ ψ, then ψ ≡ φ.

• (Transitivity). For any φ, ψ, θ ∈ F we have if φ ≡ ψ and ψ ≡ θ, then φ ≡ θ.

Recall that the equivalence class of a formula φ under the logical equivalence relation

is [φ] = {ψ ∈ F | ψ ≡ φ} and the set F/≡ is the set of all equivalence classes. That

is, F/≡ =
{
[φ] | φ ∈ F

}
. Suppose that P = {p1, p2, . . . , pn}. We then can define

a function T from the set F/≡ to the set {f is a function | f : {0, 1}n → {0, 1}} by

setting T ([φ]) = fφ; check above to see the definition of fφ. The reader is encouraged

to show that T is indeed well-defined, and moreover it is injective, and surjective.

(See the discussion above on fφ. We will discuss this again in further detail in

the next section.) Therefore, the two sets have equal cardinality. It follows that

there are 22
n
distinct equivalence classes. In other words, there are 22

n
formulas in

propositional variables p1, p2, . . . , pn up to logical equivalence.

We now examine the effect of substitutions on the truth values of formulas. In

particular, we will show that substitutions preserve tautologies.

Theorem 1.2.5. Let p1, p2, . . . , pn be distinct propositional variables, and consider

propositional formulas φ, ψ1, ψ2, . . . , ψn. Let δ be an arbitrary truth assignment.

Define a truth assignment λ as follows: for all x ∈ P we set

λ[x] =

{
δ[x] if x /∈ {p1, p2, . . . , pn};
δ[ψi] if x = pi for some 1 ≤ i ≤ n.

Then we have δ[φ(ψ1/p1, ψ2/p2, . . . , ψn/pn)] = λ[φ].

Proof. Fix some distinct propositional variables p1, p2, . . . , pn and some formulas

ψ1, ψ2, . . . , ψn. We now argue by induction on formulas.

Suppose that φ = p for some propositional variable p. If p /∈ {p1, p2, . . . , pn}, then
in this case φ(ψ1/p1, . . . ψn/pn) = p. Then by definition of λ we get

δ[φ(ψ1/p1, ψ2/p2, . . . , ψn/pn)] = δ[p] = λ[p] = λ[φ].

Otherwise, φ = pi for some 1 ≤ i ≤ n. In this case, φ(ψ1/p1, . . . ψn/pn) = ψi. Then

by definition of λ we get

δ[φ(ψ1/p1, ψ2/p2, . . . , ψn/pn)] = δ[ψi] = λ[pi] = λ[φ].

1.2. SEMANTICS OF PROPOSITIONAL LOGIC 21

Suppose that φ and θ are formulas such that δ[φ(ψ1/p1, . . . , ψn/pn)] = λ[φ] and

δ[θ(ψ1/p1, . . . , ψn/pn)] = λ[θ]. We now show that the equality holds for η = ¬φ.

δ[η(ψ1/p1, . . . , ψn/pn)] = δ[¬φ(ψ1/p1, . . . , ψn/pn)]

= 1 + δ[φ(ψ1/p1, . . . , ψn/pn)]

= 1 + λ[φ]

= λ[¬φ] = λ[η].

Next we show that the equality holds for χ = (φ ∧ θ).

δ[χ(ψ1/p1, ψ2/p2, . . . , ψn/pn)] = δ[(φ(ψ1/p1, . . . , ψn/pn) ∧ θ(ψ1/p1, . . . , ψn/pn))]

= δ[(φ(ψ1/p1, . . . , ψn/pn)] · δ[θ(ψ1/p1, . . . , ψn/pn)]

= λ[φ] · λ[θ]
= λ[(φ ∧ θ)]
= λ[χ].

Showing that the equality holds for (φ ∨ θ), (φ → θ), and (φ ↔ θ) is shown in a

similar fashion. ■

Corollary 1.2.6. For all distinct propositional variables p1, p2, . . . , pn and propositional

formulas φ, ψ1, ψ2, . . . , ψn, if φ is a tautology, then the formula φ(ψ1/p1, . . . , ψn/pn)

is a tautology as well.

Proof. Suppose that φ is a tautology. Let δ be any truth assignment, and let λ be

the corresponding truth assignment as defined in the previous theorem. Then

δ[φ(ψ1/p1, ψ2/p2, . . . , ψn/pn)] = λ[φ] = 1,

since φ is assigned the value 1 by every truth assignment. ■

Corollary 1.2.7. For any formulas φ(p1, . . . , pn), θ(p1, . . . , pn), ψ1, ψ2, . . . , ψn, we

have if φ ≡ θ, then

φ(ψ1/p1, ψ2/p2, . . . , ψn/pn) ≡ θ(ψ1/p1, ψ2/p2, . . . , ψn/pn).

Theorem 1.2.8. Let φ, ψ, and θ be propositional formulas. Suppose that ψ is a

subformula of φ and θ ≡ ψ. Then the formula φ̂ obtained from φ by substituting θ

for the subformula ψ is logically equivalent to φ.

Proof. We argue by induction on the formula φ.

Suppose that φ is a propositional variable, say φ = p for some p ∈ P, and let ψ

be a subformula of φ. Then it must be that ψ = p. Now let θ be a formula such

that θ ≡ ψ and observe that φ̂ = φ(θ/p) = θ. Since φ = ψ, ψ ≡ θ, and θ = φ̂, we

conclude that φ ≡ φ̂.

22 CHAPTER 1. PROPOSITIONAL LOGIC

Let φ = ¬η where η is a formula satisfying the statement of the theorem. Let ψ

be a subformula of φ and let θ ≡ ψ. Either ψ = φ, and in this case φ̂ = θ and

so φ ≡ φ̂, or else ψ is a subformula of η, and by induction hypothesis, the formula

η̂ which results from substituting θ for ψ in η is logically equivalent to η. Observe

that φ̂ = ¬η̂. Since η ≡ η̂ we must have that ¬η ≡ ¬η̂ by Lemma 1.3.1. Therefore,

φ ≡ φ̂.

Next suppose that φ = (η∧β) where η and β are formulas which satisfy the statement

of the theorem. Let ψ is a subformula of φ and θ ≡ ψ. There are three possibilities:

ψ = φ, ψ ∈ sf[η], or ψ ∈ sf[β]. If ψ = φ, then φ̂ = θ and so φ ≡ φ̂. If ψ is a

subformula of η, then φ̂ = (η̂ ∧β) and by induction hypothesis we know that η ≡ η̂.

Now let δ be a truth assignment, then

δ[φ] = δ[(η ∧ β)] = δ[η] · δ[β] = δ[η̂] · δ[β] = δ[(η̂ ∧ β)] = δ[φ̂].

Therefore, φ ≡ φ̂ as desired. The last possibility where ψ is a subformula of β is

analogous.

The remaining cases where φ = (η ∨ β), φ = (η → β), and φ = (η ↔ β) are dealt

with in a similar fashion. ■

Example. Let χ, ψ, θ, and φ be formulas as given below.

• Show that χ = χ(p) = (p ∨ ¬p) is a tautology.

Let δ : P → {0, 1} be any truth assignment. If δ[p] = 0, then

δ[χ] = δ[(p ∨ ¬p)] = δ[p] + δ[¬p] + δ[p] · δ[¬p] = 0 + 1 + 0 · 1 = 1.

Otherwise, δ[p] = 1, and so

δ[χ] = δ[(p ∨ ¬p)] = δ[p] + δ[¬p] + δ[p] · δ[¬p] = 1 + 0 + 1 · 0 = 1.

Therefore, χ takes the value 1 by any truth assignment, and so χ is a tautology.

• Let ψ = (¬p ∨ q) and θ = (p→ q). Show that ψ ≡ θ.

Let δ : P → {0, 1} be any truth assignment. Then

δ[ψ] = δ[(¬p ∨ q)]
= δ[¬p] + δ[q] + δ[¬p] · δ[q]
= 1 + δ[p] + δ[q] + (1 + δ[p]) · δ[q]
= 1 + δ[p] + δ[q] + δ[q] + δ[p] · δ[q]
= 1 + δ[p] + δ[p] · δ[q]
= δ[(p→ q)]

= δ[θ].

1.2. SEMANTICS OF PROPOSITIONAL LOGIC 23

• Show that φ = ((¬p ∨ q) ∨ ¬(p→ q)) is a tautology.

Observe that ψ is a subformula of φ and as we have shown ψ ≡ θ. Thus,

by Theorem 1.2.8, the formula φ̂ obtained from φ by substituting θ for the

subformula ψ is logically equivalent to φ. Here,

φ̂ = ((p→ q) ∨ ¬(p→ q)).

Next observe that φ̂ = χ(θ/p). Since χ is a tautology, by Corollary 1.2.6, we

get that χ(θ/p) is a tautology as well, and so φ̂ is a tautology. Finally, since

φ̂ ≡ φ, we conclude that φ is a tautology as desired. ♠

We use the symbol ⊤ to denote an arbitrary tautology and the symbol ⊥ to denote

an arbitrary contradiction.

Lemma 1.2.9. Let p, q, and r be propositional variables. Then the following hold.

1. (p ∧ p) ≡ p (Idempotence of ∧)

2. (p ∨ p) ≡ p (Idempotence of ∨)

3. (p ∧ q) ≡ (q ∧ p) (Commutativity of ∧)

4. (p ∨ q) ≡ (q ∨ p) (Commutativity of ∨)

5. (p ∧ (q ∧ r)) ≡ ((p ∧ q) ∧ r) (Associativity of ∧)

6. (p ∨ (q ∨ r)) ≡ ((p ∨ q) ∨ r) (Associativity of ∨)

7. (p ∧ (q ∨ r)) ≡ ((p ∧ q) ∨ (p ∧ r)) (Distributivity of ∧ over ∨)

8. (p ∨ (q ∧ r)) ≡ ((p ∨ q) ∧ (p ∨ r)) (Distributivity of ∨ over ∧)

9. (p ∧ (p ∨ q)) ≡ p (Absorption law)

10. (p ∨ (p ∧ q)) ≡ p (Absorption law)

11. ¬(p ∧ q) ≡ (¬p ∨ ¬q) (De Morgan’s law)

12. ¬(p ∨ q) ≡ (¬p ∧ ¬q) (De Morgan’s law)

13. (p ∧ ⊤) ≡ p (Identity element for ∧)

14. (p ∨ ⊥) ≡ p (Identity element for ∨)

15. (p ∧ ⊥) ≡ ⊥ (Zero element for ∧)

16. (p ∨ ⊤) ≡ ⊤ (Zero element for ∨)

17. (p→ q) ≡ (¬q → ¬p) (Contrapositive)

18. (p→ q) ≡ (¬p ∨ q)

19. (p→ q) ≡ ((p ∧ q) ↔ p)

20. (p→ q) ≡ ((p ∨ q) ↔ q)

21. (p↔ q) ≡ ((p→ q) ∧ (q → p))

24 CHAPTER 1. PROPOSITIONAL LOGIC

22. (p↔ q) ≡ (¬p↔ ¬q)

23. p ≡ (⊤ → p)

24. ¬p ≡ (p→ ⊥)

Remark. By Corollary 1.2.7, we may substitute arbitrary formulas for the propositional

variables p, q, r and still maintain the equivalences above.

Lemma 1.2.10. Let p, q, r be propositional variables. The following are tautologies.

1. (p ∨ ¬p)

2. (p→ p)

3. (p↔ p)

4. (¬¬p→ p)

5. (p→ (p ∨ q))

6. ((p ∧ q) → p)

7. (((p→ q) ∧ p) → q)

8. (((p→ q) ∧ ¬q) → ¬p)

9. ((¬p→ p) → p)

10. ((¬p→ p) ↔ p)

11. (¬p→ (p→ q))

12. (p ∨ (p→ q))

13. (p→ (q → p))

14. (((p→ q) ∧ (q → r)) → (p→ r))

15. ((p→ q) ∨ (r → p))

16. ((p→ q) → ((q → r) → (p→ r)))

17. (¬p→ (¬q ↔ (q → p)))

18. ((p→ q) → (((p→ r) → q) → q))

Remark. By Corollary 1.2.6, we may substitute arbitrary formulas for the propositional

variables p, q, r and still maintain the tautologies above.

1.2.3 Disjunctive Normal Form

Abuse of notation. We will drop the inner parentheses in formulas constructed

by taking successive conjunctions of formulas and keep just the two outermost

parentheses. We will write (φ1∧φ2∧φ3) for the formula ((φ1∧φ2)∧φ3). Alternatively,

we could choose (φ1 ∧ φ2 ∧ φ3) to represent the formula (φ1 ∧ (φ2 ∧ φ3)) instead,

1.2. SEMANTICS OF PROPOSITIONAL LOGIC 25

but both are logically equivalent as ∧ is associative and we are interested here in

the truth value of formulas rather than their syntactic form. Similarly we will write

(φ1∧φ2∧φ3∧φ4) for the formula (((φ1∧φ2)∧φ3)∧φ4). In general, taking successive

conjunctions of n formulas will be written as

(φ1 ∧ φ2 ∧ φ3 ∧ · · · ∧ φn) or
n∧
i=1

φi or
∧
i∈I

φi .

Similarly, as ∨ is associative, we shall write a formula constructed by taking successive

disjunctions of formulas as

(φ1 ∨ φ2 ∨ φ3 ∨ · · · ∨ φn) or
n∨
i=1

φi or
∨
i∈I

φi .

Lemma 1.2.11. The following hold for any integer n ≥ 1.

• ¬
n∧
i=1

φi ≡
n∨
i=1

¬φi.

• ¬
n∨
i=1

φi ≡
n∧
i=1

¬φi.

Proof. We prove the first equivalence by induction on n. For the base case,

¬
1∧
i=1

φi = ¬φ1 =
1∨
i=1

¬φi.

Now suppose the equivalence holds for some n ≥ 1. It follows that

¬
n+1∧
i=1

φi = ¬

((
n∧
i=1

φi

)
∧ φn+1

)

≡

(
¬

(
n∧
i=1

φi

)
∨ ¬φn+1

)

≡

((
n∨
i=1

¬φi

)
∨ ¬φn+1

)

≡
n+1∨
i=1

¬φi.

To get the equivalence before the last one we used the induction hypothesis and

Theorem 1.2.8. ■

Set ¬P = {¬p | p ∈ P}. Any word in P∪¬P is called a literal. So a literal is either

a propositional variable or a negation of a propositional variable.

Definition.

26 CHAPTER 1. PROPOSITIONAL LOGIC

• A propositional formula is in disjunctive normal formal (DNF) if it is a

disjunction of formulas which are conjunctions of propositional variables and

their negations. In other words, it is a formula of the form

n∨
i=1

(
ki∧
j=1

xij

)
where xij ∈ P ∪ ¬P.

• A propositional formula is in conjunctive normal formal (CNF) if it is a

conjunction of formulas which are disjunctions of propositional variables and

their negations. In other words, it is a formula of the form

n∧
i=1

(
ki∨
j=1

xij

)
where xij ∈ P ∪ ¬P.

Example. • A propositional variable p is both in DNF and CNF.

• (p ∧ q), (p ∨ ¬p), (p ∧ ¬q ∧ ¬r), and (¬p ∨ q ∨ r) are in DNF and CNF.

• ((p ∧ ¬q ∧ r) ∨ (¬r ∧ s) ∨ (q ∧ q ∧ ¬s) ∨ r) is in DNF.

• ((s ∨ ¬q ∨ ¬r) ∧ ¬r ∧ (q ∨ r ∨ ¬s ∨ p) ∧ (r ∨ s)) is in CNF.

In the remaining part of this section we assume that P = {p1, p2, . . . , pn} for some

n ≥ 1.

Notation.

• Let p ∈ P and ϵ ∈ {0, 1} we define

pϵ =

{
p if ϵ = 1;

¬p if ϵ = 0.

So p1 = p and p0 = ¬p.

• Consider an n-tuple ϵ̄ = (ϵ1, ϵ2, . . . , ϵn) ∈ {0, 1}n. Then by δϵ̄ we denote the

truth assignment δϵ̄ : {p1, p2, . . . , pn} → {0, 1} given by δϵ̄[pi] = ϵi.

For example, let ϵ̄ = (1, 0, 1, 0) ∈ {0, 1}4. Then δϵ̄ : {p1, p2, p3, p4} → {0, 1} is

given by δϵ̄[p1] = 1, δϵ̄[p2] = 0, δϵ̄[p3] = 1, and δϵ̄[p4] = 0.

• For each formula φ(p1, . . . , pn) ∈ F we define a function fφ : {0, 1}n → {0, 1}
by setting

fφ[ϵ̄] = δϵ̄[φ]

for every ϵ̄ ∈ {0, 1}n. Observe that fφ is the function given by the truth table

of the formula φ. It follows that two formulas φ and ψ are logically equivalent

if and only if fφ = fψ.

1.2. SEMANTICS OF PROPOSITIONAL LOGIC 27

Our aim now is to figure out whether the mapping from the set of formulas F to the

set {f is a function | f : {0, 1}n → {0, 1}} given by φ 7→ fφ is surjective. In other

words, can every function f : {0, 1}n → {0, 1} be viewed as the truth table of some

formula?

Lemma 1.2.12. Fix some n-tuple ϵ̄ = (ϵ1, ϵ2, . . . , ϵn) ∈ {0, 1}n, and consider the

formula

χ = χϵ̄ =
n∧
i=1

pϵii = (pϵ11 ∧ pϵ22 ∧ · · · ∧ pϵnn) .

Then δϵ̄[χ] = 1 and no other truth assignment satisfies χ.

Proof. Fix some n-tuple ϵ̄ = (ϵ1, ϵ2, . . . , ϵn) ∈ {0, 1}n. Now if ϵi = 1, then

δϵ̄[p
ϵi
i] = δϵ̄[p

1
i] = δϵ̄[pi] = ϵi = 1.

If ϵi = 0, then

δϵ̄[p
ϵi
i] = δϵ̄[p

0
i] = δϵ̄[¬pi] = 1 + δϵ̄[pi] = 1 + ϵi = 1 + 0 = 1.

Thus, δϵ̄[p
ϵi
i] = 1 for all 1 ≤ i ≤ n.

δϵ̄[χ] = δϵ̄

[
n∧
i=1

pϵii

]
= δϵ̄[p

ϵ1
1] · δϵ̄[pϵ22] · . . . · δϵ̄[pϵnn] = 1 · 1 · . . . · 1 = 1.

Next, suppose that λ is a truth assignment such that λ ̸= δϵ̄. Thus there is some j

such that λ[pj] ̸= δϵ̄[pj] and as δϵ̄[pj] = ϵj, it must be λ[pj] ̸= ϵj. If ϵj = 1, we get

λ[pj] = 0, and thus λ[p
ϵj
j] = λ[p1j] = λ[pj] = 0. If ϵj = 0, it must be λ[pj] = 1, and

thus λ[p
ϵj
j] = λ[p0j] = λ[¬pj] = 1 + λ[pj] = 1 + 1 = 0. Thus λ[p

ϵj
j] = 0 in both cases.

It follows that λ[χ] = 0, and so χ is not satisfied by λ. ■

Theorem 1.2.13. Let f : {0, 1}n → {0, 1} be a function. Then there exists a

formula φ in disjuntive normal form such that f = fφ.

Proof. Fix some function f : {0, 1}n → {0, 1}. If f assigns 0 to all tuples in its

domain, then take φ = (p1 ∧ ¬p1). Clearly, f = fφ since φ is a contradiction.

Otherwise, f assigns 1 at least once. Let

∆ = {ē ∈ {0, 1}n | f(ē) = 1}.

Clearly, ∆ ̸= ∅. Consider the formula

φ =
∨
ē∈∆

χē.

Clearly, φ is in disjunctive normal form since each χē is a conjunction of literals

(see the form of χē from Lemma 1.2.12). It remains to show that f = fφ. By

28 CHAPTER 1. PROPOSITIONAL LOGIC

Lemma 1.2.12, we know that χϵ̄ is only satisfied by the truth assignment δϵ̄ for any

ϵ̄ ∈ {0, 1}n. Let ϵ̄ be an n-tuple from the domain {0, 1}n. If ϵ̄ ∈ ∆, then

fφ[ϵ̄] = δϵ̄[φ] = δϵ̄

[∨
ē∈∆

χē

]
= δϵ̄

 ∨
ē∈∆\{ϵ̄}

χē

 ∨ χϵ̄

 = 1

because δϵ̄[χϵ̄] = 1 and δϵ̄ satisfies the truth table of ∨. As ϵ̄ ∈ ∆, we get that

f [ϵ̄] = 1 as well. So f [ϵ̄] = fφ[ϵ̄] when ϵ̄ ∈ ∆.

For the other case, suppose ϵ̄ ̸∈ ∆. Then f [ϵ̄] = 0. Moreover, δϵ̄[χē] = 0 for every

ē ∈ ∆ since χē is only satisfied by δē and ϵ̄ ̸= ē for every ē ∈ ∆. It follows that

fφ[ϵ̄] = δϵ̄[φ] = δϵ̄

[∨
ē∈∆

χē

]
= 0.

We have shown that if ϵ̄ ∈ ∆, then f [ϵ̄] = 1 = fφ[ϵ̄], and if ϵ̄ ̸∈ ∆, then f [ϵ̄] = 0 = fφ[ϵ̄].

Therefore, f = fφ as desired. ■

Corollary 1.2.14. Every formula is logically equivalent to one in disjunctive normal

form and one in conjunctive normal form.

Proof. Fix an arbitrary formula ψ(p1, . . . , pn) and let fψ : {0, 1}n → {0, 1} be the

function given by its truth table. By Theorem 1.2.13, there exists a formula φ in

disjunctive normal form such that fψ = fφ. This implies that φ is logically equivalent

to ψ as desired. So every formula is logically equivalent to a formula in disjunctive

normal form.

It remains to find a formula in conjunctive normal form logically equivalent to ψ.

By the first paragraph, we know that ¬ψ is logically equivalent to some formula θ

in disjunctive normal form. Say

θ =
n∨
i=1

(
ki∧
j=1

xij

)
where xij ∈ P ∪ ¬P.

By Lemma 1.2.11 we now obtain that

ψ ≡ ¬¬ψ ≡ ¬
n∨
i=1

(
ki∧
j=1

xij

)
≡

n∧
i=1

¬

(
ki∧
j=1

xij

)
≡

n∧
i=1

(
ki∨
j=1

¬xij

)
.

Since the negation of a literal is logically equivalent to a literal, it follows that ψ is

logically equivalent to a formula in conjuntive normal form. ■

Example. Follow the proofs of Theorem 1.2.13 and Corollary 1.2.14 to find a

formula in DNF and a formula in CNF logically equivalent to the formula

ψ = ψ(p, q, r) = ((q ∨ (¬r ∧ p)) ↔ (p→ ¬q)).

We have previously constructed the truth table of the formula ψ.

1.2. SEMANTICS OF PROPOSITIONAL LOGIC 29

p q r ψ ¬ψ
1 1 1 0 1

1 1 0 0 1

1 0 1 0 1

1 0 0 1 0

0 1 1 1 0

0 1 0 1 0

0 0 1 0 1

0 0 0 0 1

Now let fψ : {0, 1}3 → {0, 1} be the function given by its truth table. Let

∆ = {ē ∈ {0, 1}3 | fψ(ē) = 1} = {(1, 0, 0), (0, 1, 1), (0, 1, 0)}.

The formula in DNF logically equivalent to ψ is

φ =
∨
ē∈∆

χē = χ(1,0,0) ∨ χ(0,1,1) ∨ χ(0,1,0)

= (p1 ∧ q0 ∧ r0) ∨ (p0 ∧ q1 ∧ r1) ∨ (p0 ∧ q1 ∧ r0)
= (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ q ∧ ¬r).

Next, to find a formula in CNF logically equivalent to ψ, we first find a formula θ

in DNF logically equivalent to ¬ψ.

¬ψ ≡ θ =
∨
ē̸∈∆

χē = χ(1,1,1) ∨ χ(1,1,0) ∨ χ(1,0,1) ∨ χ(0,0,1) ∨ χ(0,0,0)

= (p1 ∧ q1 ∧ r1) ∨ (p1 ∧ q1 ∧ r0) ∨ (p1 ∧ q0 ∧ r1) ∨ (p0 ∧ q0 ∧ r1) ∨ (p0 ∧ q0 ∧ r0)
= (¬p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ r).

Finally,

ψ ≡ ¬θ

≡ ¬
(
(¬p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ r)

)
≡ ¬(¬p ∧ ¬q ∧ ¬r) ∧ ¬(¬p ∧ ¬q ∧ r) ∧ ¬(¬p ∧ q ∧ ¬r) ∧ ¬(p ∧ q ∧ ¬r) ∧ ¬(p ∧ q ∧ r)
≡ (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ r) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r).

Clearly, the last formula is in CNF.

We have shown that

ψ = ((q ∨ (¬r ∧ p)) ↔ (p→ ¬q))
≡ (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ q ∧ ¬r)
≡ (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ r) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r).

♠

30 CHAPTER 1. PROPOSITIONAL LOGIC

Definition. A set C of propositional connectives is called complete if every propositional

formula is logically equivalent to one which can be written using only connectives

from C.

We know that every formula is logically equivalent to one in DNF, and formulas in

DNF use only the connectives ∨, ∧, and ¬. This gives us the following result.

Corollary 1.2.15. The set {¬,∧,∨} is a complete set of propositional connectives.

Suppose that θ is a formula constructed using only the connectives ¬, ∧, and ∨.
Since (φ∨ψ) ≡ ¬(¬φ∧¬ψ) for any formulas φ and ψ, and using Theorem 1.2.8, we

may replace in θ every subformula of the form (φ∨ψ) with the formula ¬(¬φ∧¬ψ)
and get a new logically equivalent formula that only contains the propositional

connectives ¬ and ∧. This discussion gives the following result.

Corollary 1.2.16. The set {¬,∧} is a complete set of propositional connectives.

Furthermore, for any formulas φ and ψ we have (φ ∧ ψ) ≡ ¬(φ → ¬ψ). This gives
the following result.

Corollary 1.2.17. The set {¬,→} is a complete set of propositional connectives.

Remark. There is a binary connective called Sheffer stroke or NAND that is

denoted by ↑ whose truth table is given by the condition δ[(φ ↑ ψ)] = 0 exactly

when δ[φ] = 1 and δ[ψ] = 1 for any truth assignment δ.

Sheffer Stroke Truth Table

φ ψ (φ ↑ ψ)
1 1 0

1 0 1

0 1 1

0 0 1

One can check the following.

• ¬φ ≡ (φ ↑ φ).

• (φ ∧ ψ) ≡ ((φ ↑ ψ) ↑ (φ ↑ ψ)).

• (φ ∨ ψ) ≡ ((φ ↑ φ) ↑ (ψ ↑ ψ)).

Thus any propositional formula is logically equivalent to one which only uses the

Sheffer stroke.

Corollary 1.2.18. The set {↑} is a complete set of propositional connectives.

1.3. LOGICAL CONSEQUENCE 31

1.3 Logical Consequence

Recall that we say a truth assignment δ satisfies a formula φ when δ[φ] = 1, and

φ is said to be satisfiable if some truth assignment satisfies φ. We can generalize

satisfiability to a set of formulas as follows.

Definition. A set Γ of propositional formulas is satisfiable if there exists a truth

assignment δ such that δ[γ] = 1 for all γ ∈ Γ.

For example, the set {p, q, (¬p∨q)} is satisfiable, however, the set {p, ¬q, (p→ q)}
is not satisfiable. The empty set is satisfied by any truth assignment. The next

notion describes the phenomenon when the satisfiability of a set of formulas imposes

the satisfiability of some formula.

Definition.

• A propositional formula φ logically implies a formula ψ if for any truth assignment

δ, whenever δ satisfies φ, then δ satisfies ψ. We also say ψ is a logical

consequence of φ. The notation for logical implication is

φ |= ψ.

• Let Γ be a set of propositional formulas and ψ be a formula. We say that Γ

logically implies ψ if for any truth assignment δ, whenever δ[γ] = 1 for every

γ ∈ Γ, then δ[ψ] = 1. We also say ψ is a logical consequence of Γ and write

Γ |= ψ.

• When ψ is not a logical consequence of Γ, we write Γ ̸|= ψ.

Remark. If Γ |= ψ and Γ is the empty set, we simply write |= ψ and in this case ψ

is a tautology since any truth assignments satisfies the empty set.

Example. • (Modus Ponens) Let φ, ψ be any formulas. Show that

{(φ→ ψ), φ} |= ψ.

Let δ : F → {0, 1} be any truth assignment where δ[(φ→ q)] = 1 and δ[φ] = 1.

Then

1 = δ[(φ→ ψ)] = 1 + δ[φ] + δ[φ] · δ[ψ] = 1 + 1 + 1 · δ[ψ] = δ[ψ].

Thus, δ[ψ] = 1 as desired.

32 CHAPTER 1. PROPOSITIONAL LOGIC

• Show that

{(p ∧ r), (r → (p ∧ q))} |= (q ∨ t).

Let δ : F → {0, 1} be any truth assignment where δ[(p ∧ r)] = 1 and

δ[(r → (p ∧ q))] = 1. Consequently, we must have δ[r] = 1. Furthermore,

1 = δ[(r → (p∧q))] = 1+δ[r]+δ[r] ·δ[(p∧q)] = 1+1+1 ·δ[(p∧q)] = δ[(p∧q)].

So δ[(p ∧ q)] = 1. This forces δ[q] = 1. Finally,

δ[(q ∨ t)] = δ[q] + δ[t] + δ[q] · δ[t] = 1 + δ[t] + δ[t] = 1.

Thus, δ satisfies (q ∨ t) as desired.

• Show that {q, (r → ¬p)} ̸|= (q → r).

Consider a truth assignment λ where λ[p] = 1, λ[q] = 1, and λ[r] = 0. Then λ

satisfies both q and (r → ¬p), but does not satisfy (q → r).

Lemma 1.3.1. Let φ and ψ be propositional formulas. Then the following hold.

• φ |= ψ if and only if |= (φ→ ψ).

• φ ≡ ψ if and only if φ |= ψ and ψ |= φ.

• Γ ∪ {φ} |= ψ if and only if Γ |= (φ→ ψ).

Proof. We prove the first one. For the forward direction, suppose that φ |= ψ. We

will show that (φ → ψ) is a tautology. Let δ : F → {0, 1} be an arbitrary truth

assignment. If δ[φ] = 0, then δ[(φ → ψ)] = 1 + δ[φ] + δ[φ] · δ[ψ] = 1 + 0 + 0 = 1.

Otherwise, δ[φ] = 1, and since φ |= ψ, we must have that δ[ψ] = 1 as well. Then the

truth value of the implication is δ[(φ→ ψ)] = 1 + δ[φ] + δ[φ] · δ[ψ] = 1 + 1 + 1 = 1.

Thus (φ→ ψ) is a tautology as desired.

For the reverse direction, suppose that (φ → ψ) is a tautology. We will show that

φ |= ψ. Take any truth assignment δ where δ[φ] = 1. As δ[(φ → ψ)] = 1 we get

that

1 = δ[(φ→ ψ)] = 1 + δ[φ] + δ[φ] · δ[ψ] = 1 + 1 + δ[ψ] = δ[ψ].

Thus, δ[ψ] = 1 as well. This shows that φ |= ψ. ■

Chapter 2

Soundness and Completeness

The main objective of this chapter is to show that propositional logic admits a

proof system which is both sound and complete. These new concepts will gradually

become lucid through the chapter.

2.1 Proof Systems

We aim to formalize what constitutes a mathematical proof. In order to formulate

mathematical reasoning in a precise way we introduce proof systems which have

three constituent parts: (1) a formal language (e.g. propositional logic or first-order

logic), (2) a set of axioms, and (3) a set of deduction rules. Using the deduction

rules we can manipulate strings of symbols (e.g. formulas) and consequently deduce

new formulas from older formulas. There are several types of proof systems in

logic, for example, Hilbert-style proof systems (many axioms, few deductions rules),

proof systems of Natural Deduction (few axioms, many deductions rules), and proof

systems of Sequent Calculus (used in automated reasoning).

Our objective is to capture the idea of a formula ψ being derived from a set Γ of

formulas within a particular proof system. Such a derivation is a finite sequence of

formulas ending with ψ and where each step of the derivation arises in one of the

following ways:

(i) as one of the formulas in Γ;

(ii) as one of the axioms of the proof system (an axiom is a formula previously

agreed as allowable in any derivation within the system);

(iii) as a consequence of applying a deduction rule of the system to formulas already

derived.

We will introduce a Hilbert-style proof system denoted by S suitable for propositional

logic. The proof system will manipulate formulas which contain only the connectives

33

34 CHAPTER 2. SOUNDNESS AND COMPLETENESS

¬ and →. This can be later justified as the set {¬,→} is a complete set of

propositional connectives, meaning that every propositional formula is logically

equivalent to a formula which can be written using only ¬ and→ from the connectives.

Let F∗ ⊆ F be the set of all formulas whose connectives are among ¬ and →. The

set F∗ is constructed as follows.

Definition.

• We set F∗
0 = P.

• For each natural number n, we define

F∗
n+1 = F∗

n ∪ {¬φ | φ ∈ F∗
n} ∪ {(φ→ ψ) | φ, ψ ∈ F∗

n}.

• We define the set F∗ to be

F∗ =
⋃
n∈N

F∗
n.

We now introduce the axioms and the deduction rules of our system S. There are

three axioms and one deduction rule called modus ponens.

Axioms of S

The proof system S has the following three schemes of axioms.

(Ax 1)
(
φ → (ψ → φ)

)
for any φ, ψ in F∗.

(Ax 2)
(
(φ→ (ψ → θ)) → ((φ→ ψ) → (φ→ θ))

)
for any φ, ψ, θ in F∗.

(Ax 3)
(
(¬φ→ ¬ψ) → (ψ → φ)

)
for any φ, ψ in F∗.

Deduction rules of S

The proof system S has one deduction rule.

Modus Ponens. From formulas φ and (φ→ ψ), derive the formula ψ.

(MP)
φ, (φ→ ψ)

ψ

Once we have a proof system we can formalize the notion of a proof in mathematics.

We will call this formalization a formal proof or derivation or deduction.

Definition. Let Γ be a set of propositional formulas and let ψ be a propositional

formula. A derivation (or a proof) of ψ from Γ within the system S is a finite

sequence of propositional formulas

φ1, φ2, . . . , φn,

2.1. PROOF SYSTEMS 35

where the last formula φn in the sequence is the formula ψ and where each formula

φk in the sequence satisfies one of the following:

(i) φk ∈ Γ;

(ii) φk is one of the axioms of the system S;

(iii) there are formulas φi and φj in the sequence such that i < k and j < k, and

φj = (φi → φk).

Definition. We say that ψ is derivable (or provable) from Γ if there exists a

derivation of ψ from Γ within the system S. We write

Γ ⊢ ψ

when ψ is derivable from Γ.

Remark. • We call the formulas in the set Γ assumptions. If Γ ⊢ ψ and Γ = ∅,
then we write ⊢ ψ and say ψ is a theorem of the system S.

• Γ ̸⊢ ψ means that ψ is not provable from Γ, that is, there exists no derivation

of ψ from Γ.

Example. Show that

{p, (q → r)} ⊢ (r → p)

φ1 p Assumption

φ2 (p→ (r → p)) Ax 1

φ3 (r → p) MP applied to φ1, φ2

♠

Example. Let α be any formula in F∗. Show that (α → α) is a theorem of S, i.e.,

⊢ (α → α).

1.
(
α → (α → α)

)
Ax 1

2.
(
α → ((α → α) → α)

)
Ax 1

3.
(
(α → ((α → α) → α)) → ((α → (α → α)) → (α → α))

)
Ax 2

4. ((α → (α → α)) → (α → α)) MP 2, 3

5. (α → α) MP 1, 4

♠

The next example shows that, within the system S, from a formula and its negation

one can derive any formula!

36 CHAPTER 2. SOUNDNESS AND COMPLETENESS

Example. Let α, β be any formulas in F∗. Show that

{α, ¬α} ⊢ β.

1. α Assumption

2. ¬α Assumption

3. (¬α → (¬β → ¬α)) Ax 1

4. (¬β → ¬α) MP 2, 3

5. ((¬β → ¬α) → (α → β)) Ax 3

6. (α → β) MP 4, 5

7. β MP 1, 6

♠

Example. Let φ, ψ, θ be any formulas in F∗. Show that

{(φ→ (ψ → θ)), ψ} ⊢ (φ→ θ).

1. (φ→ (ψ → θ)) Assumption

2. ((φ→ (ψ → θ)) → ((φ→ ψ) → (φ→ θ))) Ax 2

3. ((φ→ ψ) → (φ→ θ)) MP 1, 2

4. (ψ → (φ→ ψ)) Ax 1

5. ψ Assumption

6. (φ→ ψ) MP 4, 5

7. (φ→ θ) MP 3, 6

♠

Example. Let α be any formula. Show that

{¬¬α} ⊢ α.

1. ((¬¬¬¬α → ¬¬α) → (¬α → ¬¬¬α)) Ax 3

2. ((¬α → ¬¬¬α) → (¬¬α → α)) Ax 3

3. (¬¬α → (¬¬¬¬α → ¬¬α)) Ax 1

4. ¬¬α Assumption

5. (¬¬¬¬α → ¬¬α) MP 3, 4

6. (¬α → ¬¬¬α) MP 1, 5

7. (¬¬α → α) MP 2, 6

8. α MP 4, 7

♠

Lemma 2.1.1. Let Γ ⊆ F∗ be a set of formulas, and let ψ be a formula in F∗.

1. If φ1, φ2, . . . , φn is derivation from Γ within the proof system S, then so is

the sequence φ1, φ2, . . . , φk for every k ≤ n.

2. If Γ ⊆ ∆ ⊆ F∗ and Γ ⊢ ψ, then ∆ ⊢ ψ.

2.2. THE DEDUCTION THEOREM 37

2.2 The Deduction Theorem

We may call theorems about the proof system S metatheorems to distinguish them

from the formal theorems that are derived within the system S. In this section we

show an important metatheoreom of S called the deduction theorem.

Lemma 2.2.1. Let Γ be a set of formulas from F∗, and φ, ψ be formulas from F∗.

If Γ ⊢ (φ→ ψ), then Γ ∪ {φ} ⊢ ψ.

Proof. Suppose that Γ ⊢ (φ → ψ). This means that there exists a derivation of

(φ → ψ) from Γ, say the derivation is the sequence α1, α2, . . . , αn. We know that

αn = (φ → ψ), and each αi is either from Γ, an axiom, or deduced by Modus

Ponens. We add two more legal steps to this derivation to create a new derivation

for ψ from the set Γ ∪ {φ} as follows.

1. α1 *

2. α2 *
...

...
...

n− 1. αn−1 *

n. (φ→ ψ) *

n+ 1. φ Assumption since φ ∈ Γ ∪ {φ}
n+ 2. ψ MP applied to steps n and n+ 1

Therefore, Γ ∪ {φ} ⊢ ψ as desired. ■

The converse of the previous lemma is a crucial property of a proof system. It is

an extremely useful tool in constructing derivations. This property is well known as

the Deduction Theorem and it states that if Γ ∪ {φ} ⊢ ψ, then Γ ⊢ (φ → ψ). Such

important property formalizes what we do in everyday mathematics when we aim

to prove an implication ‘if φ, then ψ’. Towards proving an implication, we assume

the hypothesis φ, and then work our way to prove the conclusion ψ. Once this has

been accomplished successfully, one concludes that ‘if φ, then ψ’ holds.

Theorem 2.2.2 (Deduction Theorem for S). Let Γ be a set of formulas from F∗,

and φ, ψ be formulas from F∗.

If Γ ∪ {φ} ⊢ ψ, then Γ ⊢ (φ→ ψ).

Proof. Let Γ be a set of formulas from F∗, and φ be a formula from F∗. We will

prove the theorem by mathematical induction on the length of the derivation. More

precisely, we will prove by induction on n the following statement:

If α1, α2, . . . , αn is a derivation in S from Γ ∪ {φ}, then Γ ⊢ (φ→ αn).

38 CHAPTER 2. SOUNDNESS AND COMPLETENESS

Base case. Suppose n = 1. Suppose that α1 is a derivation from Γ ∪ {φ}. So the

derivation sequence consists only of α1. It follows that α1 is either an axiom or an

assumption, more precisely, three cases arise where in each case we need to show

that Γ ⊢ (φ→ α1):

(i) α1 is an axiom.

1. α1 Axiom

2. (α1 → (φ→ α1)) Ax 1

3. (φ→ α1) MP 1, 2

(ii) α1 ∈ Γ.

1. α1 Assumption from Γ

2. (α1 → (φ→ α1)) Ax 1

3. (φ→ α1) MP 1, 2

(iii) α1 = φ.

We proved earlier that (φ → φ) is a theorem of the system S, that is, it can
be derived using only the axioms and the deduction rule. Thus, Γ ⊢ (φ→ φ).

Thus, in all these three cases, we have shown that Γ ⊢ (φ → α1) completing the

base case.

Induction step. Suppose the result is true for all derivations of length n or less.

We will show that the result holds for derivations of length n+ 1, so let

α1, α2, . . . , αn, αn+1

be a derivation from Γ ∪ {φ} in the system S. To complete the induction step, we

need to show that Γ ⊢ (φ→ αn+1). Since the sequence is a derivation we know that

αn+1 is either an axiom or αn+1 ∈ Γ ∪ {φ} or deduced by Modus Ponens. In the

first two cases we argue in a similar fashion as in the base case.

We are now left with the possibility that αn+1 was deduced by Modus Ponens. Thus,

there are formulas αi and αj in the sequence such that i < n+ 1 and j < n+ 1 and

αj = (αi → αn+1). Since both α1, α2, . . . , αi and α1, α2, . . . , αj are derivations of

length at most n from Γ∪{φ} we know, by induction hypothesis, that Γ ⊢ (φ→ αi)

and Γ ⊢ (φ → αj). Let β1, β2, . . . , βk be a derivation of (φ → αi) from Γ and let

θ1, θ2, . . . , θm be a derivation of (φ → αj) from Γ. We now construct the following

derivation:

2.2. THE DEDUCTION THEOREM 39

1. β1 *

2. β2 *
...

...
...

k. βk = (φ→ αi) *

k + 1. θ1 *

k + 2. θ2 *
...

...
...

k +m. θm = (φ→ (αi → αn+1)) *

k +m+ 1. ((φ→ (αi → αn+1)) → ((φ→ αi) → (φ→ αn+1))) Ax 2

k +m+ 2. ((φ→ αi) → (φ→ αn+1)) MP k +m, k +m+ 1

k +m+ 3. (φ→ αn+1) MP k, k +m+ 2

This is a derivation of (φ → αn+1) from Γ, and so Γ ⊢ (φ → αn+1) as desired.

This completes the induction step. Therefore, we have shown by induction that if

α1, α2, . . . , αn is a derivation from Γ ∪ {φ}, then Γ ⊢ (φ → αn) for every positive

integer n.

Now to prove the theorem, let ψ be any formula and assume that Γ ∪ {φ} ⊢ ψ. It

follows that there exists a derivation α1, α2, . . . , αn of ψ from Γ∪{φ}. By the above

we get that Γ ⊢ (φ→ αn), but αn = ψ, so Γ ⊢ (φ→ ψ) as desired. ■

Example. We proved earlier that {¬α, α} ⊢ β for any formulas α, β ∈ F∗. By

the deduction theorem, we get {¬α} ⊢ (α → β). By another application of the

deduction theorem we get

⊢ (¬α → (α → β)).

♠

Example (Double-negation Elimination). We proved earlier that {¬¬α} ⊢ α for

any formula α ∈ F∗. By the deduction theorem we get

⊢ (¬¬α → α).

♠

Example (Double-negation Introduction). Let β be any formula in F∗. Consider

the following derivation in the system S.

1. (¬¬¬β → ¬β) Double-negation Elimination

2. ((¬¬¬β → ¬β) → (β → ¬¬β)) Ax 3

3. (β → ¬¬β) MP 1, 2

Therefore,

⊢ (β → ¬¬β).

♠

40 CHAPTER 2. SOUNDNESS AND COMPLETENESS

Lemma 2.2.3. Let φ be any formula in F∗. Then within the system S we have

⊢ ((¬φ→ φ) → φ).

Proof. Let φ be any formula in F∗. We proved earlier that ⊢ (¬α → (α → β))

for any formulas α, β ∈ F∗. Take α to be the formula φ and β to be the formula

¬(¬φ→ φ) to get

⊢ (¬φ→ (φ→ ¬(¬φ→ φ))).

We now show that {(¬φ→ φ)} ⊢ φ by construction the following derivation.

1. (¬φ→ (φ→ ¬(¬φ→ φ))) Theorem of S
2. ((¬φ→ (φ→ ¬(¬φ→ φ))) → ((¬φ→ φ) → (¬φ→ ¬(¬φ→ φ)))) Ax 2

3. ((¬φ→ φ) → (¬φ→ ¬(¬φ→ φ))) MP 1, 2

4. (¬φ→ φ) Assumption

5. (¬φ→ ¬(¬φ→ φ)) MP 3, 4

6. ((¬φ→ ¬(¬φ→ φ)) → ((¬φ→ φ) → φ)) Ax 3

7. ((¬φ→ φ) → φ) MP 5, 6

8. φ MP 4, 7

The derivation above shows that {(¬φ→ φ)} ⊢ φ, and by the deduction theorem it

follows that ⊢ ((¬φ→ φ) → φ), that is, the formula ((¬φ→ φ) → φ) is a theorem

of the system S. ■

Lemma 2.2.4. If Γ ⊢ φ and ∆ ∪ {φ} ⊢ ψ, then Γ ∪∆ ⊢ ψ.

Here is another important metatheorem of the system S.

Theorem 2.2.5 (Proof by Contradiction). Let Γ be a set of formulas from F∗, and

φ, ψ be formulas from F∗.

If Γ ∪ {¬φ} ⊢ ψ and Γ ∪ {¬φ} ⊢ ¬ψ, then Γ ⊢ φ.

Proof. Assume that Γ ∪ {¬φ} ⊢ ψ and Γ ∪ {¬φ} ⊢ ¬ψ. Applying the deduction

theorem to the second one we obtain Γ ⊢ (¬φ→ ¬ψ). Now we add additional steps

to this derivation to obtain the following derivation from Γ.

1. (¬φ→ ¬ψ) *

2. ((¬φ→ ¬ψ) → (ψ → φ)) Ax 3

3. (ψ → φ) MP 1, 2

Therefore, Γ ⊢ (ψ → φ). By Lemma 2.2.1, we obtain that Γ ∪ {ψ} ⊢ φ. Since

Γ ∪ {¬φ} ⊢ ψ and Γ ∪ {ψ} ⊢ φ, by Lemma 2.2.4, it follows that Γ ∪ {¬φ} ⊢ φ. By
the deduction theorem we obtain that Γ ⊢ (¬φ → φ). Adding the following steps

to this derivation we get the following derivation from Γ.

2.2. THE DEDUCTION THEOREM 41

1. (¬φ→ φ) *

2. ((¬φ→ φ) → φ) Lemma 2.2.3

3. φ MP 1, 2

Therefore, Γ ⊢ φ as desired. ■

Theorem 2.2.6 (Proof by Contradiction II). Let Γ be a set of formulas from F∗,

and φ, ψ be formulas from F∗.

If Γ ∪ {φ} ⊢ ψ and Γ ∪ {φ} ⊢ ¬ψ, then Γ ⊢ ¬φ.

Proof. Assume that Γ ∪ {φ} ⊢ ψ and Γ ∪ {φ} ⊢ ¬ψ. We proved earlier that

{¬¬φ} ⊢ φ. Using Lemma 2.2.4, from {¬¬φ} ⊢ φ and Γ ∪ {φ} ⊢ ψ we obtain

Γ ∪ {¬¬φ} ⊢ ψ. Similarly, from {¬¬φ} ⊢ φ and Γ ∪ {φ} ⊢ ¬ψ we obtain

Γ ∪ {¬¬φ} ⊢ ¬ψ. By the first version of Proof by Contradiction, we obtain that

Γ ⊢ ¬φ. ■

Example. Show that {¬(θ → ¬ψ)} ⊢ ψ.

We will use proof by contradiction. Towards this we will show that {¬(θ → ¬ψ),¬ψ} ⊢ χ
and {¬(θ → ¬ψ),¬ψ} ⊢ ¬χ for some formula χ. The following derivation shows

that {¬(θ → ¬ψ),¬ψ} ⊢ (θ → ¬ψ).

1. ¬(θ → ¬ψ) Assumption

2. ¬ψ Assumption

3. (¬ψ → (θ → ¬ψ)) Ax 1

4. (θ → ¬ψ) MP 2, 3

Moreover, it is obvious that {¬(θ → ¬ψ),¬ψ} ⊢ ¬(θ → ¬ψ). Therefore, by proof

by contradiction, we conclude that {¬(θ → ¬ψ)} ⊢ ψ. ♠

42 CHAPTER 2. SOUNDNESS AND COMPLETENESS

2.3 The Soundness Theorem

Our goal is to show that our proof system S enjoys two important metatheorems:

soundness and completeness. Together they show that the notions of provability

(syntax) and logical consequence (semantics) match together. Notice that these two

notions describe the situation when one statement follows from a set of statements.

We first show that the system S is sound, meaning that a derivation in S corresponds

to a logical consequence.

Lemma 2.3.1. All instances of the three axioms of the proof system S are tautologies.

• (φ → (ψ → φ))

• ((φ→ (ψ → θ)) → ((φ→ ψ) → (φ→ θ)))

• ((¬φ→ ¬ψ) → (ψ → φ))

Proof. We will show that Ax 1 is a tautology. Choose any formulas φ and ψ and let

δ : F → {0, 1} be any truth assignment. Then

δ[(φ → (ψ → φ))] = 1 + δ[φ] + δ[φ] · δ[(ψ → φ)]

= 1 + δ[φ] + δ[φ] · (1 + δ[ψ] + δ[ψ] · δ[φ])
= 1 + δ[φ] + δ[φ] + δ[φ] · δ[ψ] + δ[ψ] · δ[φ]
= 1 + δ[φ] · (1 + 1) + (δ[φ] · δ[ψ]) · (1 + 1)

= 1 + 0 + 0 = 1.

■

Theorem 2.3.2 (Soundess theorem for S). Let Γ be a set of propositional formulas

and let ψ be any propositional formula. If Γ proves ψ, then Γ logically implies ψ.

In symbols,

If Γ ⊢ ψ, then Γ |= ψ.

Proof. We will show by mathematical induction on the length n of the derivation

the following:

If α1, α2, . . . , αn is a derivation from Γ in the system S and δ is a truth assignment

that satisfies Γ, then δ satisfies αn.

Base case. Suppose that n = 1 and let δ be a truth assignment which satisfies Γ,

that is, δ[γ] = 1 for every γ ∈ Γ. We need to show that δ[α1] = 1. Observe that α1

being the first formula of a derivation either belongs to Γ or is an axiom. For the

former case, as δ satisfies every formula in Γ we get δ[α1] = 1. For the latter case,

by Lemma 2.3.1, we know that axioms of S are tautologies, and so δ[α1] = 1 as well.

2.3. THE SOUNDNESS THEOREM 43

Induction step. Suppose that result holds for all derivations of length at most n.

That is, if β1, β2, . . . , βk is a derivation from Γ and k ≤ n and δ satisfies Γ, then

δ[βk] = 1. Consider a derivation α1, α2, . . . , αn, αn+1 from Γ and let δ be a truth

assignment which satisfies Γ. We need to show that δ satisfies αn+1. The formula

αn+1 being in a derivation either belongs to Γ or an axiom or derived by Modus

Ponens. If αn+1 is in Γ or an axiom, then δ satisfies αn+1 as in the base case.

Otherwise, αn+1 is deduced in the derivation by an application of Modus Ponens.

So there are formulas αi and αj in the derivation such that i < n+ 1 and j < n+ 1

and αj = (αi → αn+1). Since both α1, α2, . . . , αi and α1, α2, . . . , αj are derivations

of length at most n from Γ we know, by induction hypothesis, that δ[αi] = 1 and

δ[αj] = 1. Therefore,

1 = δ[αj] = δ[(αi → αn+1)] = 1 + δ[αi] + δ[αi] · δ[αn+1] = 1 + 1 + δ[αn+1] = δ[αn+1].

Thus, δ satisfies αn+1. This completes the induction step.

Finally to show the soundness of the system S, assume that Γ ⊢ ψ. We need to

show that Γ |= ψ. Towards this end, let δ be any derivation which satisfies Γ. Since

Γ ⊢ ψ, there exists a derivation α1, α2, . . . , αn of ψ from Γ in the system S. It

follows that αn = ψ, and by the above we obtain that δ satisfies ψ. So every truth

assignment which satisfies Γ satisfies ψ, that is, Γ |= ψ. ■

If we take Γ in the soundness theorem to be the empty set we obtain the following.

Corollary 2.3.3. Any theorem of the system S is a tautology. In symbols,

if ⊢ ψ, then |= ψ.

The contrapositive of the soundness theorem is useful in showing that some derivations

do not exist. We state it here.

Corollary 2.3.4. If Γ ̸|= ψ, then Γ ̸⊢ ψ.

Example. The formula ((q → p) → q) is not derivable in S from the set {(p→ q)}.

Consider a truth assignment δ where δ[p] = 0 and δ[q] = 0. Then δ satisfies (p→ q)

but does not satisfy ((q → p) → q). Thus, {(p → q)} does not logically imply

((q → p) → q), that is, {(p → q)} ̸|= ((q → p) → q). By the soundness theorem we

get that {(p→ q)} ̸⊢ ((q → p) → q). ♠

Definition.

• A proof system is inconsistent if there exists a formula θ such that within the

system we have ⊢ θ and ⊢ ¬θ.

• A proof system is consistent if it is not inconsistent.

44 CHAPTER 2. SOUNDNESS AND COMPLETENESS

In a similar fashion, we may talk about a set of formulas being inconsistent.

Definition.

• A set Γ of formulas is inconsistent if there exists a formula θ for which both

Γ ⊢ θ and Γ ⊢ ¬θ.

• A set Γ of formulas is consistent if it is not inconsistent.

Remark. A proof system is inconsistent if and only if the empty set is inconsistent.

Example. • The set Γ = {p,¬p} is inconsistent because Γ ⊢ p and Γ ⊢ ¬p.

• The set ∆ = {¬(p→ q), ¬(q → r)} is inconsistent because ∆ ⊢ q and ∆ ⊢ ¬q.

♠

Showing that a set of axioms is consistent is of major importance in mathematics,

as otherwise, one can prove all formulas in an inconsistent system, meaning that no

valuable information is gained by such formal frameworks. The soundness theorem

assures us that our proof system S is consistent, a status that is much desirable.

Theorem 2.3.5. The proof system S is consistent.

Proof. Suppose for the sake of contradiction that S was inconsistent. Then there

exists a formula θ such that ⊢ θ and ⊢ ¬θ. By the soundness theorem, we get that

|= θ and |= ¬θ, meaning that both θ and ¬θ are tautologies, this cannot happen.

So the system S is indeed consistent. ■

Lemma 2.3.6. A set Γ of formulas is inconsistent if and only if Γ ⊢ ψ for every

formula ψ.

Proof. Suppose the Γ is inconsistent and let ψ be any arbitrary formula. So there

exists a formula θ for which both Γ ⊢ θ and Γ ⊢ ¬θ. We previously proved that

{θ,¬θ} ⊢ ψ. Using these three derivations one can construct a derivation of the

formula ψ from Γ. Therefore, Γ ⊢ ψ.

For the reverse direction, suppose that Γ ⊢ ψ for every formula ψ. Then Γ ⊢ p and

Γ ⊢ ¬p. Therefore, Γ is inconsistent. ■

Corollary 2.3.7. A set Γ of formulas is consistent if and only if Γ ̸⊢ φ for some

formula φ.

Lemma 2.3.8. Let Γ be a set of formulas and φ be a formula. Then

Γ ∪ {¬φ} is inconsistent if and only if Γ ⊢ φ.

2.3. THE SOUNDNESS THEOREM 45

Proof. Suppose that Γ ∪ {¬φ} is inconsistent. Then there is a formula θ for which

both Γ ∪ {¬φ} ⊢ θ and Γ ∪ {¬φ} ⊢ ¬θ. By proof by contradiction, we obtain that

Γ ⊢ φ.

For the other direction, suppose that Γ ⊢ φ. Then obviously, Γ ∪ {¬φ} ⊢ φ and

Γ ∪ {¬φ} ⊢ ¬φ. Therefore Γ ∪ {¬φ} is inconsistent. ■

Corollary 2.3.9. Let Γ be a set of formulas and φ be a formula. Then

Γ ∪ {¬φ} is consistent if and only if Γ ̸⊢ φ.

Lemma 2.3.10. Let Γ be set of formulas. If Γ is consistent and Γ ⊢ φ, then Γ∪{φ}
is consistent as well.

Proof. Suppose that Γ is consistent and Γ ⊢ φ. For the sake of contradiction,

suppose that Γ∪ {φ} is inconsistent. Thus, Γ∪ {φ} ⊢ θ and Γ∪ {φ} ⊢ ¬θ for some

formula θ. By the deduction theorem, we get that Γ ⊢ (φ → θ) and Γ ⊢ (φ → ¬θ).
Since Γ ⊢ φ we obtain that Γ ⊢ θ and Γ ⊢ ¬θ meaning that Γ is inconsistent, a

contradiction. Therefore, Γ ∪ {φ} must be consistent. ■

The following theorem shows that soundness of a formal system can be expressed in

terms of consistency and satisfiability of sets of formulas.

Theorem 2.3.11. The following statements are equivalent in a proof system.

(I) For all sets of formulas Γ and all formulas ψ, if Γ ⊢ ψ, then Γ |= ψ.

(II) For all sets of formulas Γ, if Γ is inconsistent, then Γ is not satisfiable.

Proof. (I) ⇒ (II). Assume statement (I), that is, suppose that the system is sound.

Assume that Γ is an inconsistent set of formulas. So there exists a formula θ for

which both Γ ⊢ θ and Γ ⊢ ¬θ. By soundness, we obtain that Γ |= θ and Γ |= ¬θ.
Now let δ be any truth assignment and, for the sake of contradiction, assume that

δ satisfies Γ. By definition of logical consequence, we get that δ satisfies both θ and

¬θ. But also as δ respects negation, we must have δ[¬θ] = 1+ δ[θ] = 1+ 1 = 0, and

so δ does not satisfy ¬θ, a contradiction. Thus, no truth assignment satisfies Γ, and

so Γ is not satisfiable.

(II) ⇒ (I). Suppose statement (II) holds. We need to show that the proof system

is sound. Let Γ be a set of formulas and ψ be a formula, and assume that Γ ⊢ ψ.

We need to show that Γ |= ψ. Let δ be any truth assignment and suppose that δ

satisfies Γ. Since Γ ⊢ ψ, we infer by Lemma 2.3.8 that Γ ∪ {¬ψ} is inconsistent. It

follows from (II) that Γ∪{¬ψ} is not satisfiable, and so δ cannot satisfy ¬ψ because

if it does then it will satisfy all formulas in Γ ∪ {¬ψ}. So δ[¬ψ] = 0 implying that

δ[ψ] = 1, and thus δ satisfies ψ. So every truth assignment which satisfies Γ satisfies

ψ, that is, Γ |= ψ. ■

46 CHAPTER 2. SOUNDNESS AND COMPLETENESS

As we have proved the soundness theorem for our proof system S we obtain the

following result describing another connection between syntax and semantics of

propositional logic.

Corollary 2.3.12. For all sets of formulas Γ, if Γ is inconsistent in S, then Γ is

not satisfiable.

We may also express the previous result via its contrapositive.

Corollary 2.3.13. For all sets of formulas Γ, if Γ is satisfiable, then Γ is consistent.

Example. The set {¬(p → q), ¬(r → q)} is consistent because it is satisfiable by

any truth assignment δ for which δ[p] = 1, δ[q] = 0, and δ[r] = 1. ♠

2.4. THE COMPLETENESS THEOREM 47

2.4 The Completeness Theorem

We have come to a point to establish the most important property of our formal

system: the completeness theorem. It states that the proof system is powerful

enough to derive all logical consequences. It is in no way obvious that the axioms

and the deduction rule of the proof system S are sufficient to deal with all logical

consequences.

Definition. A set Γ of propositional formulas is called complete if

(i) Γ is consistent and

(ii) for each formula φ, either Γ ⊢ φ or Γ ⊢ ¬φ.

Lemma 2.4.1. Suppose that Γ is a complete set of propositional formulas. Then

for any formulas φ and ψ in F∗ we have:

(i) Γ ⊢ ¬φ if and only if Γ ̸⊢ φ.
(ii) Γ ⊢ (φ→ ψ) if and only if Γ ⊢ ¬φ or Γ ⊢ ψ.

Proof. Let Γ be a complete set of formulas and let φ and ψ be formulas in F∗.

(i) (⇒) Suppose that Γ ⊢ ¬φ. Since Γ is consistent, Γ ̸⊢ φ.
(⇐) Suppose Γ ̸⊢ φ. Since Γ is complete, Γ ⊢ ¬φ.

(ii) (⇒) Suppose Γ ⊢ (φ → ψ). If Γ ⊢ ¬φ, we are done. Otherwise, suppose

that Γ ̸⊢ ¬φ. As Γ is complete we must have Γ ⊢ φ. Using the derivations

of Γ ⊢ (φ → ψ) and Γ ⊢ φ, and an application of Modus Ponens we may

construct a derivation for Γ ⊢ ψ.
(⇐) Case (i) Suppose Γ ⊢ ¬φ. We proved earlier that ⊢ (¬φ → (φ → ψ)).

Thus, using these two derivations together with an application of Modus

Ponens we construct a derivation of Γ ⊢ (φ→ ψ).

Case (ii) Suppose that Γ ⊢ ψ. Using this derivation together with an instance

(ψ → (φ→ ψ)) of Axiom 1, and an application of Modus Ponens we get that

Γ ⊢ (φ→ ψ).

■

Theorem 2.4.2. If Γ is a complete set of propositional formulas, then Γ is satisfiable.

Proof. Let Γ be a complete set of formulas. Let the set of propositional variables

be P = {p0, p1, p2, . . .}. As each propositional variable is a formula and as Γ is

complete we get that either Γ ⊢ pi or Γ ⊢ ¬pi, but not both, for every i ∈ N. Let

δ : F → {0, 1} be the truth assignment determined by setting:

δ[pi] =

{
1 if Γ ⊢ pi;
0 if Γ ⊢ ¬pi.

48 CHAPTER 2. SOUNDNESS AND COMPLETENESS

Claim. We claim that for any formula φ ∈ F∗ we have:

δ[φ] = 1 if and only if Γ ⊢ φ.

We prove the claim by induction on formulas. By definition of the truth assignment

δ we have that δ[p] = 1 if and only if Γ ⊢ p for every propositional variable p ∈ P.

Now let φ, ψ be formulas in F∗ for which the claim is satisfied. We have to show

that the claim holds for ¬φ and (φ→ ψ). For the first,

δ[¬φ] = 1 ⇔ δ[φ] = 0

⇔ Γ ̸⊢ φ (Induction hypothesis)

⇔ Γ ⊢ ¬φ. (Since Γ is complete)

It remains to show that the claim holds for the formula (φ→ ψ).

δ[(φ→ ψ)] = 1 ⇔ δ[φ] = 0 or δ[ψ] = 1

⇔ Γ ̸⊢ φ or Γ ⊢ ψ (Induction hypothesis)

⇔ Γ ⊢ ¬φ or Γ ⊢ ψ (Since Γ is complete)

⇔ Γ ⊢ (φ→ ψ). (By Lemma 2.4.1(ii)).

This establishes the claim. Now, choose any formula γ ∈ Γ. Obviously, Γ ⊢ γ. By

the claim δ[γ] = 1. So δ satisfies every formula in Γ and so Γ is satisfiable. ■

Theorem 2.4.3. Suppose that Γ is a consistent set of formulas. Then there exists

a complete set of formulas Γ̃ such that Γ ⊆ Γ̃.

Proof. Start with any consistent set of formulas Γ. Since F∗ is a countably infinite

set, we can enumerate all its formulas as

F∗ = {φ1, φ2, φ3, . . .}.

We proceed by constructing a chain of consistent sets of formulas

Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γn ⊆ Γn+1 ⊆ · · ·

as follows. We start by taking Γ0 = Γ, and so Γ0 is consistent. Then suppose the

consistent set Γn has been constructed, we construct a new consistent set Γn+1 as

follows.

Γn+1 =

{
Γn ∪ {φn+1} if Γn ⊢ φn+1 ;

Γn ∪ {¬φn+1} if Γn ̸⊢ φn+1 .

Observe that if Γn ⊢ φn+1, then Γn ∪ {φn+1} is consistent by Lemma 2.3.10, and

if Γn ̸⊢ φn+1, then Γn ∪ {¬φn+1} is consistent by Corollary 2.3.9. Thus, Γn+1 is

2.4. THE COMPLETENESS THEOREM 49

consistent. Furthermore, by construction, we have that either φn ∈ Γn or ¬φn ∈ Γn
for every positive integer n. Finally, let

Γ̃ =
⋃
n∈N

Γn.

Clearly, Γ = Γ0 ⊆ Γ̃. We claim that Γ̃ is a complete set of formulas.

Suppose for the sake of contradiction that Γ̃ is inconsistent. Then there exists

a formulas θ such that Γ̃ ⊢ θ and Γ̃ ⊢ ¬θ. Since derivations are finite, these

two derivations used finitely many formulas (assumptions) from Γ̃. So there is

some m large enough such that all these assumptions are members of Γm, and

consequently, we obtain that Γm ⊢ θ and Γm ⊢ ¬θ. This shows that Γm is

inconsistent, contradicting that every Γn is consistent by construction. Therefore,

Γ̃ must be consistent.

It remains to show that Γ̃ proves any formula or its negation. Let ψ be any formula

in F∗. Then ψ appears in the enumeration above, say ψ = φn for some n. At stage

n of construction, we ensured that either φn ∈ Γn or ¬φn ∈ Γn. It follows that

φn ∈ Γ̃ or ¬φn ∈ Γ̃. Thus obviously we obtain that Γ̃ ⊢ φn or Γ̃ ⊢ ¬φn. Therefore,
Γ̃ ⊢ ψ or Γ̃ ⊢ ¬ψ as desired.

We have shown that Γ̃ is complete and contains Γ as a subset. ■

Corollary 2.4.4. If Γ is a consistent set of propositional formulas, then Γ is

satisfiable.

Proof. Let Γ be a consistent set of formulas. By Theorem 2.4.3, there exists a

complete set of formulas Γ̃ such that Γ ⊆ Γ̃. By Theorem 2.4.2, we get that Γ̃ is

satisfiable. Thus, there exists a truth assignment δ which satisfies every formula

Γ̃. Since Γ ⊆ Γ̃ the same truth assignment δ satisfies every formula in Γ. So Γ is

satisfiable. ■

We now have all the tools to prove the completeness theorem for the proof system

S. The completeness theorem says that the proof system S with its three schemes

of axioms and its Modus Ponens deduction rule is complete, that is, it is rich enough

to produce a formal derivation for any logical consequence in propositional logic.

Theorem 2.4.5 (Completeness Theorem for S). Let Γ be any set of propositional

formulas and let ψ be any propositional formula. Then if Γ logically implies ψ, then

Γ proves ψ. In symbols,

if Γ |= ψ, then Γ ⊢ ψ.

Proof. We will show the contrapositive of the theorem. Suppose that Γ ̸⊢ ψ. It

follows by Corollary 2.3.9 that Γ ∪ {¬ψ} is consistent. By Corollary 2.4.4, we get

50 CHAPTER 2. SOUNDNESS AND COMPLETENESS

that Γ ∪ {¬ψ} is satisfiable. Thus, there exists a truth assignment δ that satisfies

every formula in Γ ∪ {¬ψ}. This δ satisfies the set Γ and satisfies the formula ¬ψ,
and so δ satisfies Γ and does not satisfy ψ. Therefore, Γ ̸|= ψ as desired. ■

Corollary 2.4.6 (Soundness and Completeness of S). Let Γ be any set of propositional

formulas and ψ be a propositional formula.

Γ ⊢ ψ if and only if Γ |= ψ.

Corollary 2.4.7. Let Γ be any set of propositional formulas.

Γ is satisfiable if and only if Γ is consistent.

Next we investigate an interesting characteristic of sets of formulas and its relation

with complete sets.

Definition. A set Σ of formulas is called maximal consistent if

(i) Σ is consistent and

(ii) for any consistent set ∆ of formulas, if Σ ⊆ ∆, then Σ = ∆.

Observe that Σ being maximal consistent means that there is no consistent set

of formulas which properly contains Σ. That is, every proper superset of Σ is

inconsistent. We now show that maximal consistent sets are closed under derivability.

Lemma 2.4.8. If Σ is maximal consistent, then Σ contains all the formulas derivable

from Σ, that is, if Σ ⊢ φ, then φ ∈ Σ for any formula φ.

Proof. Let Σ be a maximal consistent set of formulas and let φ be a formula. Suppose

that Σ ⊢ φ. Since Σ is consistent, by Lemma 2.3.10, we get that Σ∪{φ} is consistent
as well. Clearly, Σ ⊆ Σ∪{φ}, and so by maximality of Σ, we get that Σ = Σ∪{φ}.
Thus, φ ∈ Σ. ■

The next two theorems show that complete sets and maximal consistent sets are

essentially the same notions.

Theorem 2.4.9. Let Γ be a complete set of formulas. Then the set

Σ = {φ ∈ F∗ | Γ ⊢ φ}

is maximal consistent.

Proof. Suppose that Γ is a complete set of formulas. We have to show that the set

Σ = {φ ∈ F∗ | Γ ⊢ φ} is maximal consistent. By definition of Σ one can show

that Γ ⊢ φ if and only if Σ ⊢ φ for any formula φ. In other words, Γ and Σ prove

exactly the same set of formulas. Consequently, as Γ is consistent it follows that Σ

2.4. THE COMPLETENESS THEOREM 51

is consistent as well. It remains to show that Σ is maximal. Let Σ ⊆ ∆ where ∆

is a consistent set of formulas. Choose any formula φ ∈ ∆. Since Γ is complete,

Γ ⊢ φ or Γ ⊢ ¬φ. If Γ ⊢ ¬φ, it follows that ¬φ ∈ Σ, and thus both φ,¬φ ∈ ∆,

contradicting that ∆ is consistent. Therefore, it must be the case that Γ ⊢ φ, and

in this case we get that φ ∈ Σ. Thus, ∆ ⊆ Σ. So Σ = ∆ establishing that Σ is

maximal consistent. ■

Theorem 2.4.10. If Σ is a maximal consistent set of formulas, then Σ is complete.

Proof. Let Σ be a maximal consistent set of formulas. By definition, Σ is consistent.

It remains to show that Σ proves any formula or its negation. Let φ be any formula.

If Σ ⊢ φ, we are done. Otherwise, Σ ̸⊢ φ and so, by Corollary 2.3.9, it follows that

Σ ∪ {¬φ} is consistent. Since Σ ⊆ Σ ∪ {¬φ} and Σ is maximal consistent, we get

that Σ = Σ ∪ {¬φ}, and so ¬φ ∈ Σ. Thus, Σ ⊢ ¬φ. ■

By Theorem 2.4.10 and Lemma 2.4.8 we obtain the following characterization of

maximal consistent sets.

Corollary 2.4.11. A set Σ of formulas is maximal consistent if and only if

(i) Σ is consistent and

(ii) for each formula φ, either φ ∈ Σ or ¬φ ∈ Σ.

We can now give plenty of examples of complete sets.

Example. Choose any truth assignment δ : P → {0, 1}. Consider the set

Σδ = {φ ∈ F∗ | δ[φ] = 1}.

Then Σδ is satisfiable by δ, and so consistent by Corollary 2.3.13. Moreover, by

definition of Σδ, exactly one of φ ∈ Σδ or ¬φ ∈ Σδ holds for every formula φ in F∗.

Therefore, Σδ is maximal consistent and is complete as well. ♠

Definition. We say that two proof systems S1 and S2 are equivalent if for any set

of formulas Γ and any formula ψ we have that

Γ ⊢S1 ψ if and only if Γ ⊢S2 ψ.

Theorem 2.4.12. Suppose that S1 and S2 are proof systems for propositional logic

which are both sound and complete. Then S1 and S2 are equivalent.

Proof. Let Γ be a set of formulas and let ψ be a formula. Then

Γ ⊢S1 ψ
Soundness
=======⇒

S1

Γ |= ψ

Completeness
========⇒

S2

Γ ⊢S2 ψ.

52 CHAPTER 2. SOUNDNESS AND COMPLETENESS

Thus, if Γ ⊢S1 ψ , then Γ ⊢S2 ψ. Similarly,

Γ ⊢S2 ψ
Soundness
=======⇒

S2

Γ |= ψ

Completeness
========⇒

S1

Γ ⊢S1 ψ.

Therefore, S1 and S2 are equivalent. ■

Corollary 2.4.13. Any sound and complete proof system of propositional logic is

equivalent to our proof system S introduced in Section 2.1.

2.5. THE COMPACTNESS THEOREM 53

2.5 The Compactness Theorem

Let Γ be a (possibly infinite) set of formulas and let ψ be a formula. Furthermore,

suppose that Γ |= ψ. By the completeness theorem, we obtain Γ ⊢ ψ. By definition

of a derivation being a finite sequence of formulas, there is a finite subset ∆ ⊆ Γ

such that ∆ ⊢ ψ. By the soundness theorem, we get that ∆ |= ψ. In summary, if

Γ |= ψ, then ∆ |= ψ for some finite subset ∆ ⊆ Γ.

Definition. A set Γ of formulas is called finitely satisfiable if every finite subset of

Γ is satisfiable.

Theorem 2.5.1 (Compactness Theorem). A set of propositional formulas Γ is

satisfiable if and only if Γ is finitely satisfiable.

Proof. The forward direction is obvious.

For the converse, suppose that a set of formulas Γ is finitely satisfiable. For the sake

of contradiction, assume that Γ is not satisfiable. By Corollary 2.4.4 we know that

Γ is inconsistent. Thus there exists a formula θ such that Γ ⊢ θ and Γ ⊢ ¬θ. As

derivations use finitely many formulas, these two derivations have used finitely many

assumptions from Γ. Let ∆ ⊆ Γ be the set of the finitely many assumptions from Γ

used in both of these derivations. Thus, ∆ ⊢ θ and ∆ ⊢ ¬θ. It follows that ∆ is a

finite inconsistent set of Γ. By Corollary 2.3.12, we know that ∆ is not satisfiable.

So we get that ∆ is a finite set of Γ which is not satisfiable, contradicting that Γ is

finitely satisfiable. Therefore, Γ must be satisfiable. ■

Corollary 2.5.2. If Γ is not satisfiable, then there exists a finite subset ∆ ⊆ Γ

which is not satisfiable.

Example. Suppose that Γ is an infinite set of formulas such that every truth

assignment satisfies at least one formula in Γ. That is, for any truth assignment

δ, there is φ ∈ Γ such that δ[φ] = 1. Show that Γ has a finite subset with the same

property.

Consider the set Σ = {¬φ | φ ∈ Γ}. By definition of Σ and the property of Γ, any

truth assignment does not satisfy at least one formula in Σ. So Σ is not satisfiable.

By Compactness Theorem, there is a finite subset ∆ ⊆ Σ which is not satisfiable.

Then the set Λ = {φ ∈ Γ | ¬φ ∈ ∆} is a finite subset of Γ where every truth

assignment satisfies at least one formula in Λ. ♠

54 CHAPTER 2. SOUNDNESS AND COMPLETENESS

Chapter 3

First-Order Logic

In everyday mathematics we study mathematical objects together with the properties

they satisfy or they do not satisfy. First-order logic (FOL), also called predicate

logic, is one attempt towards the formalization of this mathematical activity. The

syntax of first-order logic consists of certain strings of symbols called terms and

formulas. Terms name elements of the mathematical object of interest, and formulas

describe properties of these elements. Terms and formulas are strings built from an

alphabet of symbols that includes propositional connectives and parentheses, as in

propositional logic, together with the universal quantifier ∀, the existential quantifier
∃, and an infinite stock of variables x0, x1, x2, . . .; these make the innovation of first-

order logic. The alphabet has also more symbols from the first-order language that

is appropriate to describe the mathematical structure under consideration. The

semantics of first-order logic defines the satisfaction of a formula in a structure.

The name “first-order” refers to the fact that quantifiers range over elements of

the structure under study. For instance when we say that every real number has

an additive inverse, we quantify over the members of the set R. On the other

hand, there are mathematical properties that cannot be expressed in first-order

logic. For example, to say that the field of real numbers is complete we say that

“every nonempty subset of R which is bounded above has a least upper bound

(supremum)”. Here the universal quantifier ranges over subsets of R and not over

elements of R. This is allowed in second-order logic.

3.1 First-Order Structures

3.1.1 Languages and Structures

We aim to develop a logic capable of describing mathematical objects such as the

following.

55

56 CHAPTER 3. FIRST-ORDER LOGIC

1. The ordered field of real numbers (R, 0, 1,+, ·, <).

2. The field of complex numbers (C, 0, 1,+, ·).

3. The field (Z7, 0, 1,+, ·) of integers modulo 7.

4. The exponential field of real numbers (R, 0, 1,+, ·, exp).

5. The structure (A, ∼) where A is a set and ∼ is an equivalence relation on A.

6. The complete graph (Kn, E) where E is the edge relation.

7. The discrete linear order of the integers (Z, <).

8. The dense linear order of the rationals (Q, <).

9. The additive group of integers (Z, 0,+).

10. The arithmetic of natural numbers (N, 0, 1,+, ·).

11. The boolean algebra (P(A), ∅, A,∩,∪, c) for any set A.

12. The Lindenbaum-Tarski algebra (F/ ≡, ⊥,⊤,∧,∨,¬) where F/ ≡ is the set

of equivalence classes given by the logical equivalence relation on the set F of

propositional formulas.

All of the mathematical structures above consist of a set on which some functions

and relations are defined along with some distinguished elements. For example, the

field of real numbers consists of the set R with 0 and 1 as distinguished elements

and it has addition + and multiplication · as functions from R×R to R, and has the

usual order ≤ of real numbers as a binary relation on R, that is, a subset of R×R.

Definition. A first-order language L is a set of symbols of three kinds: constant

symbols ci, function symbols fj, and relation symbols Rk, more precisely,

L = {ci | i ∈ I} ∪ {fj | j ∈ J} ∪ {Rk | k ∈ K}

for some indexing sets I, J,K. Moreover, every function symbol and every relation

symbol is associated with a positive integer called its arity.

A first-order language is also called a signature or a vocabulary. When the arity is

1 we say unary, when the arity is 2 we say binary, and when the arity is 3 we say

ternary. We follow the convention that first-order languages contain the equality

symbol “=” which is a binary relation symbol. A first-order language which contains

no constant symbols and no function symbols is called a relational language.

When the symbols of a first-order language are interpreted as their intended meaning

the result will be a first-order structure. All of the mathematical objects given at

3.1. FIRST-ORDER STRUCTURES 57

the beginning of this section are first-order structures. In general, we choose a first-

order language appropriate for the type of structure under consideration. We adapt

our choice of constant symbols, function symbols, and relation symbols in L to suit

the structure being dealt with.

Definition. Let L be a first-order language. An L-structure M consists of

• a nonempty set M , called the domain or the underlying set of the structure

M;

• for each constant symbol c ∈ L, a distinguished element cM in M called the

interpretation of the symbol c in the structure M;

• for each function symbol f ∈ L of arity n, a function fM : Mn → M called

the interpretation of the symbol f in the structure M;

• for each relation symbol R ∈ L of arity n, a subset RM ⊆ Mn called the

interpretation of the symbol R in the structure M.

Recall that a relation of arity n on a set M is a subset of the cartesian product Mn

and a predicate is a symbol representing a relation.

Remark. The interpretation of the equality symbol in a structure M is the equality

relation on its underlying set M . That is, =M is a subset of M2 and it is the set

{(a, a) | a ∈M}.

Usually, we first choose a first order language L. Then to describe an L-structure we
give its underlying set, and then provide the interpretations of the various symbols

of the language preferably in the same order these symbols were presented. It is

common to use calligraphic letters (usually M or N) to denote a L-structures and
use their corresponding Latin letters (M or N) to denote the underlying set of the

structure. More generally, for a first-order language

L = {ci | i ∈ I} ∪ {fj | j ∈ J} ∪ {Rk | k ∈ K}

we present an L-structure by writing

M = (M, cMi , f
M
j , RM

k)i∈I, j∈J, k∈K .

Example. Consider the first-order language L = {a, c, f, g, h,R} where a, c are

constant symbols, f, g are binary function symbols, h is a unary function symbol,

and R is a binary relation symbol. An example of an L-structure is the exponential
field of real numbers

M = (R, 0, 1,+, ·, exp,≤).

From this we understand that the underlying set of the L-structure M is the set R
of real numbers, and in which the interpretations of the symbols in L are as follows:

58 CHAPTER 3. FIRST-ORDER LOGIC

• Interpret a as the real number 0, that is, aM is 0.

• Interpret c as the real number 1, that is, cM is 1.

• Interpret f as the addition function fM : R×R → R where fM(x, y) = x+ y.

• Interpret g as the multiplication function gM : R×R → R where gM(x, y) = x·y.

• Interpret h as the exponential function hM : R → R where hM(x) = ex.

• InterpretR as the usual order relation on real numbers, soRM = {(x, y) | x ≤ y}.

♠

Example. Consider the first-order language L = {a, c, f, g, h, L} as in the previous

example and let us introduce another L-structure. Let A = {1, 2, 3} and consider

the L-structure given by

N = (P(A), ∅, A,∩,∪, c,⊆).

The underlying set of the structure N is the set

N = P(A) =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
,

and the interpretations in the structure N of the symbols of L are as follows.

• aN is ∅.

• cN is {1, 2, 3}.

• fN : N ×N → N where fN (x, y) = x ∩ y.

• gN : N ×N → N where gN (x, y) = x ∪ y.

• hN : N → N where hN (x) = xc where xc is the complement of the subset x.

• Interpret R as the subset relation, so RN = {(x, y) | x ⊆ y}.

♠

Remark. It is important to make a clear distinction between a symbol s of a first-

order language L and its interpretation sM in an L-structure M. As we have seen

above, the same symbol has different interpretations in various L-structures.

Exercise. Build a first-order language L of your choice and present various L-
structures which need not to be known structures!

3.1. FIRST-ORDER STRUCTURES 59

3.1.2 Substructures

Fix a first-order language L. Let M be an L-structure with domainM and let N be

an L-structure with domain N . We say that M is a substructure N when M ⊆ N

and the interpretations of the symbols of L in the structure M are the restrictions of

their interpretations in N to the subsetM . More precisely, we present the following

definition.

Definition. Let L be a first-order language, and let M and N be L-structures.
We say that M is a substructure of N , if and only if the following conditions are

satisfied:

• M ⊆ N where M is the domain of M and N is the domain N ;

• for each constant symbol c ∈ L, we have that cM = cN ;

• for each function symbol f ∈ L of arity n, we have that fM(ā) = fN (ā) for

every n-tuple ā ∈Mn, that is, fM = fN ↾Mn ;

• for each relation symbol R ∈ L of arity n, we have that

RM = RN ∩Mn,

that is, for every n-tuple ā ∈Mn we have ā ∈ RM if and only if ā ∈ RN .

Remark. When M is a substructure of N we write M ⊆ N , and we also say that

N is an extension of M.

Let us state some consequences of the definition above. Suppose that M is a

substructure of N . If c is a constant symbol, then cN ∈ M since cM = cN . If

f is a function symbol, then the restriction of the function fN to the subset Mn

must be the function fM : Mn → M . This means that the subset M of the set N

is closed under the function fN . From this we conclude that for a subset A ⊆ N to

be the underlying set of a substructure of N it must include all the interpretations

in N of constant symbols of L and is closed under all functions of the structure N .

Example. Consider the language L = {c, f, R} where c is a constant symbol, f

is a unary function symbol, and R is a binary relation symbol. Now consider the

following L-structures.

• M = (M, cM, fM, RM) where M = {1, 2, 3} and cM = 2 and the function fM

is given by 1 7→ 2, 2 7→ 3, 3 7→ 1, and the relation is

RM = {(1, 1), (1, 2), (2, 1), (3, 2)}.

60 CHAPTER 3. FIRST-ORDER LOGIC

• N = (N, cN , fN , RN) where N = {0, 1, 2, 3, 4, 5} and cN = 2 and the function

fN is given by 0 7→ 1, 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 2, 5 7→ 3, and the relation is

RN = {(0, 1), (1, 1), (1, 4), (1, 2), (2, 1), (3, 2), (4, 5), (5, 3)}.

• A = (A, cA, fA, RA) where A = {0, 1, 2, 3, 4, 5} and cA = 2 and the function

fA is given by 0 7→ 1, 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 5, 5 7→ 4, and the relation is

RA = {(0, 2), (1, 1), (1, 2), (2, 1), (1, 3), (3, 2), (4, 5), (5, 3)}.

Then M is a substructure of N , and M is not a substructure of A. Moreover,

neither of N and A is a substructure of the other. ♠

Example. Consider the language L = {a, c, f, g, R} where a, c are constant symbols,

f, g are binary function symbols, and R is a binary relation symbol. All of the

structures below are L-structures.

• (Q, 0, 1,+, ·, <) is a substructure of (R, 0, 1,+, ·, <).

• (Q, 0, 1,+, ·, <) is not a substructure of (R, 0, 3,+, ·, <).

• (Z, 0, 1,+, ·, <) is a substructure of (Q, 0, 1,+, ·, <).

• (Z, 0, 1,+, ·, |) where | is the divisibility relation is not a substructure of

(Q, 0, 1,+, ·, <).

• (Z7, 0, 1,+, ·, <) where +, · are addition and multiplication modulo 7 respectively

is not a substructure of (Z9, 0, 1,⊕, ⋆, <) where⊕, ⋆ are addition and multiplication

modulo 9 respectively.

♠

Example (Graph theory). Recall that a graph is a set equipped with an irreflexive

symmetric binary relation. Consider a first-order language L = {E} where E is a

binary relation symbol. Suppose that G and H are graphs, then we can view them

as L-structures by interpreting E as the edge relation in each one of them. Then G

is a substructure of H if and only if G is an induced subgraph of H.

3.1.3 Isomorphisms

An isomorphism between first-order structures over the same language is a bijective

map which respects the constants, functions, and relations of these these structures.

Definition. Let L be a first-order language, and let M and N be L-structures with
underlying setsM and N , respectively. An isomorphism from M to N is a bijective

map h :M → N such that the following conditions are satisfied:

3.1. FIRST-ORDER STRUCTURES 61

• for every constant symbol c ∈ L, we have that

h(cM) = cN ;

• for every function symbol f ∈ L of arity n, and for every n-tuple (a1, a2, . . . , an)

in Mn we have that

h(fM(a1, a2, . . . , an)) = fN (h(a1), h(a2), . . . , h(an));

• for every relation symbol R ∈ L of arity n, and for every n-tuple (a1, a2, . . . , an)

in Mn we have that

(a1, a2, . . . , an) ∈ RM if and only if (h(a1), h(a2), . . . , h(an)) ∈ RN .

When there is an isomorphism from an L-structure M to an L-structure N we say

that the structures are isomorphic and we write M ∼= N .

Definition. An automorphism of a structure M is an isomorphism from M to M.

Remark. Let M be an L-structure. Then the set Aut(M) of all automorphisms

of M is a group under function composition.

Definition. Let M and N be L-structures. An embedding of M in N is an

isomorphism from M to a substructure of N .

Example. Consider the first-order language L = {c, f} where c is a constant symbol

and f is a binary function symbol. Then

(R, 0,+) ∼= (R+, 1, ·)

where R+ is the set of positive reals. The map x 7→ ex is one isomorphism.

Example. Consider the first-order language L = {E} where E is a binary relation

symbol. Consider the structure A = (A,EA) where A = {0, 1, 2, 3, 4, 6} and

EA = {(x, y) ∈ A2 | x ≡ y (mod 3)} and the structure B = (B,EB) where

B = {3, 4, 6, 8, 11, 12} and EB = {(x, y) ∈ B2 | x ≡ y (mod 4)}. Then A ∼= B.
A map witnessing this isomorphism is the map h : A → B given by 0 7→ 4, 1 7→ 3,

2 7→ 6, 3 7→ 8, 4 7→ 11, and 6 7→ 12. Check that for any x, y ∈ A we have that

(x, y) ∈ EA if and only if (h(x), h(y)) ∈ EB.

62 CHAPTER 3. FIRST-ORDER LOGIC

3.2 Syntax of First-Order Logic

We first describe the alphabet from which we will build the terms and formulas

in first-order logic. The alphabet AL of a first-order language L is the set of the

following symbols:

• The propositional connectives: negation ¬, conjunction ∧, disjunction ∨,
implication →, and equivalence ↔.

• Opening parenthesis ‘(’, closing parenthesis ‘)’, and comma ‘, ’.

• Countably infinite list of variables x0, x1, x2, x3,

• The universal quantifier ∀ that is read as ‘for all ’.

• The existential quantifier ∃ that is read as ‘there exists at least one’.

• The constant symbols, function symbols, and relation symbols of L.

Thus,

AL = {¬,∧,∨,→,↔} ∪ {), (, , } ∪ { ∀,∃ } ∪ {x0, x1, x2, . . .} ∪ L.

The symbols in L are sometimes called the non-logical symbols of the alphabet. We

also use the symbols x, y, z for variables as well. Next, we aim to define special words

over this alphabet which will be called terms and first-order formulas. Terms are

constructed with the intention that when they are interpreted will denote elements

of an L-structure. Formulas are built with the intention of describing properties of

an L-structure.

3.2.1 Terms

The ingredients to build terms are variables, constant symbols, and function symbols.

We define terms inductively as follows.

Let L be a first-order language. A term of L is constructed as follows.

• Any constant symbol of L is a term.

• Any variable from {x0, x1, x2, . . .} is a term.

• If f ∈ L is an n-ary function symbol and t1, t2, . . . , tn are terms, then the word

f(t1, t2, . . . , tn) is a term as well.

• Nothing else is a term.

3.2. SYNTAX OF FIRST-ORDER LOGIC 63

More precisely, the set of all terms is the union of a chain of subsets defined

inductively as follows.

Definition. • Put T0 = {c ∈ L | c is a constant symbol} ∪ {x0, x1, x2, x3, . . .}.

• For any k ∈ N, we define Tk+1 to be the set

Tk ∪ {f(t1, . . . , tn) | f ∈ L is an n-ary function symbol and t1, . . . , tn ∈ Tk}.

• The set T of all terms of L is defined as

T =
⋃
k∈N

Tk.

Observe that if the language has no function symbols at all, then T = T0, meaning

that the only terms of the language are the variables and the constant symbols. A

term which has no occurrences of variables is called a closed term. As the reader

would expect, the height of a term t is the least natural number k such that t ∈ Tk.

Lemma 3.2.1. The set T of all terms of L is the smallest subset of the set W(AL) of

all words over the alphabet AL which contains all the constant symbols and variables,

and is closed under all operations of the form

[w1, w2, . . . , wn] 7→ f(w1, w2, . . . , wn)

where f is an n-ary function symbol of L.

Example. Suppose that L has two constant symbols a, c, one unary function symbol

f , one binary function symbol g, and one ternary function symbol h. Then the

following are terms of L.

• a, c, x, y, z.

• f(a), f(c), f(x), f(y).

• g(a, a), g(a, c), g(c, x), g(y, a), g(x, y).

• h(a, c, c), h(x, y, z), h(y, z, c), h(z, z, z), h(a, a, a), h(x, x, y), h(a, x, c).

• f(f(a)), f(f(x)), f(g(a, c)), f(g(x, y)), f(h(a, a, a)), f(h(y, z, c)).

• g(c, f(x)), g(f(x), f(y)), g(f(c), g(a, a)), g(g(c, x), g(x, y)), g(f(c), h(a, c, c)),

g(h(a, x, c), g(a, c)), g(h(y, z, c), h(a, a, a)).

• h(a, x, f(c)), h(a, f(y), g(x, y)), h(f(x), g(x, y), h(x, y, z)),

h(h(a, c, z), h(x, y, z), h(c, c, c)).

• f(f(f(x))), f(f(g(a, c))), f(f(h(y, z, c))).

64 CHAPTER 3. FIRST-ORDER LOGIC

• g(g(c, f(x)), g(f(c), g(a, a))), g(g(g(c, x), g(x, y)), g(f(c), h(a, c, c))),

g(h(f(x), g(x, y), h(x, y, z)), h(h(a, c, z), h(x, y, z), h(c, c, c))).

• h(f(f(c)), g(f(c), g(a, a)), h(a, f(y), g(x, y))),

h(h(a, x, f(c)), h(h(a, a, a), h(x, x, x), h(c, c, c)), h(g(a, c), g(x, y), h(c, c, c))).

♠

Example. Below is the decomposition tree of the term

g
(
g(f(f(x)), g(f(a), h(x, y, c))), h(c, f(a), z)

)
.

Observe that the leaves of the tree are either constant symbols or variables. Moreover,

the number of branches going down a non-leaf node is exactly the arity of the

function symbol used at that stage of construction.

g
(
g(f(f(x)), g(f(a), h(x, y, c))), h(c, f(a), z)

)

g(f(f(x)), g(f(a), h(x, y, c)))

f(f(x))

f(x)

x

g(f(a), h(x, y, c))

f(a)

a

h(x, y, c)

x y c

h(c, f(a), z)

c f(a)

a

z

♠

Notation. Suppose that t ∈ T is a term of some language and i1, i2, . . . , ik
are distinct natural numbers. We will use the notation t = t(xi1 , xi2 , . . . , xik)

to indicate that the variables that occur in the term t are among the variables

xi1 , xi2 , . . . , xik . For example, if the term t = g(f(x2), h(x4, c, x2)), then we write

t(x2, x4) or t(x0, x1, x2, x3, x4).

3.2.2 First-Order Formulas

Definition. Suppose that R is an n-ary relation symbol and t1, t2, . . . , tn are terms

of a first-order language L. Then the word

R(t1, t2, . . . , tn)

is called an atomic formula.

3.2. SYNTAX OF FIRST-ORDER LOGIC 65

Notation. When dealing with the equality symbol the atomic formula = (t1, t2)

may be written as t1 = t2 or (t1 = t2).

Example. Let L = {c, f, g, P,R} be a first-order language consisting of a constant

symbol c, a unary function symbol f , a binary function symbol g, a unary relation

symbol P and a binary relation symbol R. The following are atomic formulas.

• P (c), P (x), R(c, c), R(c, x), R(x, y), x = y, c = c, x = c.

• P (f(c)), P (f(x)), P (g(c, x)), R(f(x), f(y)), R(f(c), g(x, y)), f(x) = c,

g(x, y) = z, g(x, y) = c, f(y) = g(x, y).

• P (g(f(x), g(c, c))), R(g(c, c), g(f(x), f(c))), g(f(x), g(c, c)) = f(y).

We have arrived to the point of describing the process of constructing a first-order

formula, which is also called an L-formula or a well-formed formula (WFF or wff).

• An atomic formula is a first-order formula.

• Suppose that φ and ψ are first-order formulas, then

¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ)

are first-order formulas as well.

• Suppose that φ is first-order formula and x is a variable, then

∀xφ and ∃xφ

are first-order formulas as well.

• Nothing else is a first-order formula.

We say that the formula ∀xφ is the universal quantification of the formula φ with

respect to the variable x. Similarly, the formula ∃xφ is said to be the existential

quantification of the formula φ with respect to the variable x. Alternatively, to

describe the construction of ∀xφ from φ we say that the variable x has been

universally quantified. Similarly, in the construction of ∃xφ from φ we say that

the variable x has been existentially quantified. Let us define the set of all first-

order formulas F in a precise way.

Definition. Let L be a first-order language.

• We set F0 to be the set of all atomic formulas of L.

• For each natural number n, we define

Fn+1 = Fn ∪ {¬φ | φ ∈ Fn} ∪ {(φ ∧ ψ) | φ, ψ ∈ Fn} ∪ {(φ ∨ ψ) | φ, ψ ∈ Fn}
∪ {(φ→ ψ) | φ, ψ ∈ Fn} ∪ {(φ↔ ψ) | φ, ψ ∈ Fn}
∪ {∀xi φ | φ ∈ Fn, i ∈ N} ∪ {∃xi φ | φ ∈ Fn, i ∈ N}.

66 CHAPTER 3. FIRST-ORDER LOGIC

• We define the set F of all first-order formulas of L to be

F =
⋃
n∈N

Fn.

We also say an L-formula for a first-order formula of a language L. The formula

¬(t1 = t2) may be written as t1 ̸= t2 or (t1 ̸= t2). As it was done previously, the

height of a first-order formula φ, denoted by h[φ], is the least natural number n such

that φ ∈ Fn.

Example. Let L = {c, f, g, P,R} be a first-order language consisting of a constant

symbol c, a unary function symbol f , a binary function symbol g, a unary relation

symbol P and a binary relation symbol R. The following are first-order formulas.

• ¬P (c), ¬R(c, y), (P (c) ∧ P (x)), (P (x) ↔ R(c, x)), (R(x, y) → x = y).

• (P (f(c)) ∧ P (f(x))), (P (g(c, x)) ∨R(f(x), f(y)))

• ∀xP (c), ∀xP (x), ∀xP (y), ∀xR(c, y), ∀y (P (x) ↔ R(c, x)).

• ∃xP (c), ∃xP (x), ∃xP (z), ∃x (P (g(c, y)) ∨R(f(x), f(y))).

• ∀x ∀x ∀x∀xP (x), ∀x0 ∀x1 ∀x2 ∀x3R(x2, x3), ∃x ∃y R(x, c), ∃y ∃z R(x, x).

• ∀x ∃y ∃x ∀y (P (x) ∨R(c, z)), ∀x3 ∃x1 ∀x0 ∃x0 (P (x2) ∨R(c, x0)).

♠

Example. Below is the decomposition tree of the first-order formula(
(∀x∃y R(x, y) → ∀x∀xP (a)) ↔ (P (c) ∧ ¬R(a, f(x)))

)
.

Observe that the leaves of the tree are atomic formulas.(
(∀x ∃y R(x, y) → ∀x∀xP (a)) ↔ (P (c) ∧ ¬R(a, f(x)))

)

(∀x∃y R(x, y) → ∀x ∀xP (a))

∀x∃y R(x, y)

∃y R(x, y)

R(x, y)

∀x∀xP (a)

∀xP (a)

P (a)

(P (c) ∧ ¬R(a, f(x)))

P (c) ¬R(a, f(x))

R(a, f(x))

♠

3.2. SYNTAX OF FIRST-ORDER LOGIC 67

3.2.3 Free Variables and Bound Variables

An occurrence of a variable x in a first-order formula is either free or bound. An

occurrence of a variable x is bound if it falls under the action of a quantifier ∀x or

∃x. In other words, for any formula φ, all the occurrences of a variable x in the

formulas ∀xφ and ∃xφ are said to be bound. An occurrence of a variable x which

is not controlled by these quantifiers is said to be free. Generally some occurrences

of a given variable in a formula could be free and other occurrences of the same

variable may be bound. Let us define these concepts precisely.

Definition. Suppose that x and y are distinct variables from the set {x0, x1, x2, . . .}.
We define whether an occurrence of the variable x in a formula φ is free or bound

inductively as follows.

• If φ is an atomic formula, then every occurrence of x in φ is free.

• If φ = ¬ψ, then the free occurrences of x in φ are exactly those free occurrences

of x in ψ.

• If φ = (ψ ⋄ θ) where ⋄ is a binary propositional connective, then the free

occurrences of x in φ are exactly those free occurrences of x in ψ and the free

occurrences of x in θ.

• If φ = ∀y ψ or φ = ∃y ψ, then the free occurrences of x in φ are exactly those

free occurrences of x in ψ.

• If φ = ∀xψ or φ = ∃xψ, then none of the occurrences of x in φ is free. An

occurrence of a variable which is not free is called bound.

Definition. A variable in a first-order formula is called a free variable if it has at

least one free occurrence in the formula.

Definition. A first-order formula which has no free variables is called a sentence or

a closed formula.

Example. Let x, y, z, w be distinct variables, and let L = {c, f, R} be a language

where c is a constant symbol, f is a unary function symbol, and R is a binary

relation symbol. In the first-order formulas of L below, the dotted occurrences of

variables are free, and the un-dotted occurrences of variables are bound.

• R(ẋ, ẏ) (Both x and y are free variables.)

• ∃z R(ẋ, ẏ) (Both x and y are free variables.)

• ∃xR(x, ẏ) (Only y is free variables.)

• ∃y ∃xR(x, y) (This is an L-sentence, i.e., no free variables.)

68 CHAPTER 3. FIRST-ORDER LOGIC

• R(c, f(c)) (This is an L-sentence.)

• (∃xR(x, ẏ) ∧ ¬R(ẋ, ẏ)) (Both x and y are free variables.)

• (∃xR(x, ẏ) ∧ ∀y R(ẋ, y)) (Both x and y are free variables.)

• ∀y (∃xR(x, y) ∧ ∀y R(ẋ, y)) (Only x is a free variables.)

• (∃x (R(x, ẏ) → R(c, ż))∨∀z ∃y (R(ẋ, y) ↔ R(ẋ, z))) (x, y, z are free variables.)

• ∀x (∃y ∀x (R(y, x) → x = ẇ) ∧ ∀w(∃z (R(ẏ, z) ∨R(f(x), c)) ∧ ż = ż))

♠

Notation. Suppose that φ is a first-order formula and i1, i2, . . . , in are distinct

natural numbers. Then we write

φ = φ(xi1 , xi2 , . . . , xin)

to indicate that the free variables of φ are among the variables xi1 , xi2 , . . . , xin .

Definition. In the formula ∀xφ the occurrence of x occurring immediately after

the quantifier ∀ together with all free occurrences of x in the formula φ are said to

be within the scope of the quantifier ∀x. Similarly, we treat the formula ∃xφ.

Observe that an occurrence of a variable can be within the scope of at most one

quantifier. For example, in the formula

∀x (((x = x) ∨ ∃x (x ̸= x)) → x = x),

only the first three and the last two occurrences of the variable x are within the

scope of the first quantifier ∀x. The fourth, fifth, and sixth occurrences of x are not

within the scope of quantifier ∀x but within the scope of the second quantifier ∃x.

3.3. SEMANTICS OF FIRST-ORDER LOGIC 69

3.3 Semantics of First-Order Logic

In the below we work with a first-order language L.

3.3.1 Interpretation of Terms

Definition. Let t = t(x1, x2, . . . , xn) be a term of L. Let M be an L-structure with
underlying set M and let a1, a2, . . . , an ∈ M . The interpretation of the term t in

the structure M when the variables x1, x2, . . . , xn are interpreted respectively by the

elements a1, a2, . . . , an is an element of M , denoted by

tM(a1/x1, a2/x2, . . . , an/xn) or tM(a1, a2, . . . , an)

and is defined by induction on the term t as follows:

• if t = c where c ∈ L is a constant symbol, then

tM(a1/x1, a2/x2, . . . , an/xn) = cM ;

• if t = xi where 1 ≤ i ≤ n, then

tM(a1/x1, a2/x2, . . . , an/xn) = ai ;

• if t = f(t1, t2, . . . , tk) where f ∈ L is a k-ary function symbol and t1, t2, . . . , tk
are terms of L, then

tM(a1/x1, . . . , an/xn) = fM(tM1 (a1/x1, . . . , an/xn), . . . , t
M
k (a1/x1, . . . , an/xn)) .

To compute the interpretation of a term in a structure it would be helpful to build

the decomposition tree of the term and then follow the definition above to evaluate

the interpretations of the nodes of the tree in the given structure from the leaves all

the way to the very top.

Given a term t = t(x1, x2, . . . , xn) of L we see the interpretation of t in M gives us

a function from Mn to M given by the map

(a1, a2, . . . , an) 7→ tM(a1, a2, . . . , an).

Example. Consider the first-order language L = {a, c, f, g, h} where a, c are constant
symbols, f, g are binary function symbols, h is a unary function symbol. Consider

the term

t = t(x, y, z) = f(g(f(x, y), g(z, z)), h(x))

Take the exponential field of real numbers as an L-structure:

M = (R, 0, 1,+, ·, exp).

70 CHAPTER 3. FIRST-ORDER LOGIC

Then

tM(2/x, 4/y, 0.5/z) = fM(gM(fM(2/x, 4/y), gM(0.5/z, 0.5/z)), hM(2/x))

= fM(gM(fM(2, 4), gM(0.5, 0.5)), hM(2))

= fM(gM((2 + 4), (0.5 · 0.5)), exp(2))
= fM(gM(6, 0.25), exp(2))

= fM((6 · 0.25), exp(2))
= fM(1.5, exp(2)) = 1.5 + exp(2) = 1.5 + e2.

Now consider the term s(x) = f(g(f(c, c), g(a, c)), h(x)). Then the interpretation of

s in M is

sM(3/x) = fM(gM(fM(cM, cM), gM(aM, cM)), hM(3/x))

= fM(gM(fM(1, 1), gM(0, 1)), hM(3))

= fM(gM((1 + 1), (0 · 1)), exp(3))
= fM(gM(2, 0), exp(3))

= fM((2 · 0), exp(3))
= fM(0, exp(3)) = 0 + exp(3) = exp(3) = e3.

In a similar fashion, show that sM(0/x) = 1. ♠

3.3.2 Satisfaction of Formulas

In the below we work with a first-order language L. Recall that the notation

φ = φ(x1, x2, . . . , xn) indicates that the free variables in the formula φ are among

the variables x1, x2, . . . , xn.

Definition. Suppose that φ(x1, x2, . . . , xn) is a first-order formula of L and let M
be an L-structure and let a1, a2, . . . , an be elements of the domain of M. We write

M |= φ(a1/x1, a2/x2, . . . , an/xn) or M |= φ(a1, a2, . . . , an)

for the formula φ is satisfied in the structure M when the variables x1, x2, . . . , xn
are interpreted respectively by the elements a1, a2, . . . , an (the symbol |= is read

‘satisfies’). The satisfaction of a formula in a structure is defined by induction

on the formula φ = φ(x1, x2, . . . , xn) as follows.

• Suppose that the formula φ(x1, x2, . . . , xn) is an atomic formula, say

φ = R(t1, t2, . . . , tk) where R ∈ L is a k-ary relation symbol and t1, t2, . . . , tk
are L-terms. So the variables in each term ti are among x1, x2, . . . , xn. Then

we define M |= φ(a1/x1, a2/x2, . . . , an/xn) if and only if(
tM1 (a1/x1, a2/x2, . . . , an/xn), . . . , t

M
k (a1/x1, a2/x2, . . . , an/xn)

)
∈ RM.

3.3. SEMANTICS OF FIRST-ORDER LOGIC 71

• Suppose that φ = ¬ψ(x1, x2, . . . , xn). Then M |= φ(a1/x1, a2/x2, . . . , an/xn)

if and only if M ̸|= ψ(a1/x1, a2/x2, . . . , an/xn). (We write M ̸|= ψ when M
does not satisfy ψ.)

• Suppose φ = (ψ ∧ θ). Then M |= φ(a1/x1, a2/x2, . . . , an/xn) if and only if

M |= ψ(a1/x1, a2/x2, . . . , an/xn) and M |= θ(a1/x1, a2/x2, . . . , an/xn).

• Suppose φ = (ψ ∨ θ). Then M |= φ(a1/x1, a2/x2, . . . , an/xn) if and only if

M |= ψ(a1/x1, a2/x2, . . . , an/xn) or M |= θ(a1/x1, a2/x2, . . . , an/xn).

• Suppose φ = (ψ → θ). Then M |= φ(a1/x1, a2/x2, . . . , an/xn) if and only if

M ̸|= ψ(a1/x1, a2/x2, . . . , an/xn) or M |= θ(a1/x1, a2/x2, . . . , an/xn).

• Suppose φ = (ψ ↔ θ). Then M |= φ(a1/x1, a2/x2, . . . , an/xn) if and only if

M |= ψ(a1/x1, a2/x2, . . . , an/xn) and M |= θ(a1/x1, a2/x2, . . . , an/xn);

or else

M ̸|= ψ(a1/x1, a2/x2, . . . , an/xn) and M ̸|= θ(a1/x1, a2/x2, . . . , an/xn).

• Suppose φ = ∀y ψ(x1, x2, . . . , xn, y) where y ̸∈ {x1, . . . , xn}. Then
M |= φ(a1/x1, a2/x2, . . . , an/xn) if and only if for every element b in M we

have that M |= ψ(a1/x1, a2/x2, . . . , an/xn, b/y).

• Suppose φ = ∃y ψ(x1, x2, . . . , xn, y) where y ̸∈ {x1, . . . , xn}. Then
M |= φ(a1/x1, a2/x2, . . . , an/xn) if and only if there exists at least one element

b in M such that M |= ψ(a1/x1, a2/x2, . . . , an/xn, b/y).

• Suppose φ = ∀xi ψ(x1, x2, . . . , xn) where 1 ≤ i ≤ n. Then

M |= φ(a1/x1, a2/x2, . . . , an/xn) if and only if for every element b in M we

have that M |= ψ(a1/x1, . . . , ai−1/xi−1, b/xi, ai+1/xi+1, . . . , an/xn).

• Suppose φ = ∃xi ψ(x1, x2, . . . , xn) where 1 ≤ i ≤ n. Then

M |= φ(a1/x1, . . . , ai/xi, . . . , an/xn) if and only if there is at least one element

b in M such that M |= ψ(a1/x1, . . . , ai−1/xi−1, b/xi, ai+1/xi+1, . . . , an/xn).

There are various ways to read M |= φ(a1/x1, a2/x2, . . . , an/xn) including the

following.

1. The structureM satisfies the formula φ when the elements a1, . . . , an interpret

respectively the variables x1, . . . , xn.

2. The formula φ is true in M when a1, . . . , an interpret respectively x1, . . . , xn.

3. The formula φ is satisfied in M by the tuple (a1, . . . , an).

4. The tuple (a1, . . . , an) satisfies the formula φ(x1, . . . , xn) in the structure M.

72 CHAPTER 3. FIRST-ORDER LOGIC

When the formula φ is a sentence (i.e. has no free variables) we simply write

M |= φ

when φ is satisfied in M. For any L-sentence σ and any L-structure M exactly one

of the following occurs: either M |= σ or M ̸|= σ. For the former we say σ is true

in M and for the latter we say that σ is false in M. When M |= σ we also say that

the structure M is a model of σ. Here comes the name ‘Model Theory’.

More generally, when φ is a formula whose free variables are exactly x1, x2, . . . , xn,

we say that φ is satisfied in M (or φ is true in M) and write M |= φ if the structure

M satisfies the sentence ∀x1 · · · ∀xn φ. This means that the formula φ(x1, . . . , xn)

is true in M under any interpretation of the variables x1, . . . , xn, in other words, we

have M |= φ(a1/x1, a2/x2, . . . , an/xn) for all elements a1, a2, . . . , an in M.

Example. Let L = {g} where g is a binary function symbol. Consider the formula

φ = φ(x) = ∀y ∀z (g(x, y) = g(x, z) → y = z).

Let M = (Z, ·). Then M |= φ(2/x) holds. To see this,

M |= φ(2/x) iff for any a ∈ Z: M |= ∀z (g(x, y) = g(x, z) → y = z) when 2/x, a/y

iff for any a ∈ Z, for any b ∈ Z:
M |= (g(x, y) = g(x, z) → y = z) when 2/x, a/y, b/z

iff for any a, b ∈ Z: M ̸|= (g(x, y) = g(x, z)) when 2/x, a/y, b/z

or M |= (y = z) when 2/x, a/y, b/z

iff for any a, b ∈ Z: gM(2, a) ̸= gM(2, b) or (a = b)

iff for any a, b ∈ Z: (2 · a ̸= 2 · b) or (a = b), which is true.

In a similar argument one may show that M ̸|= φ(0/x). ♠

Lemma 3.3.1. Suppose that M is an L-structure and ψ(x, y1, . . . , yk) is an L-
formula and x does not appear free in ψ. Then for any elements a, b, c1, c2, . . . , ck
in M we have that

M |= ψ(a/x, c1/y1, . . . , ck/yk) if and only if M |= ψ(b/x, c1/y1, . . . , ck/yk).

Proof. Exercise. Proceed by induction on first-order formulas. ■

Definition. Let φ(x1, . . . , xn) be an L-formula and let M be an L-structure with

domain M . Then the set φ(M) of all solutions of the formula φ in the structure M
is the set of all n-tuples of elements of M which satisfy φ in M, that is,

φ(M) =
{
(a1, . . . , an) ∈Mn | M |= φ(a1, . . . , an)

}
.

3.3. SEMANTICS OF FIRST-ORDER LOGIC 73

Example. Let L = {c, f, R} be a first-order language where c is a constant symbol,

f is a unary function symbol, and R is a binary relation symbol, and consider the

L-structure M = (R, π, cos,≤).

1) φ(x) = R(c, x) φ(M) = {a ∈ R | π ≤ a} = [π,∞)

2) φ(x) = ∃y (f(y) = x) φ(M) = [−1, 1]

3) φ(x) = ∃y (f(x) = y) φ(M) = R
4) φ(x) = (f(x) = c) φ(M) = {a ∈ R | cos(a) = π} = ∅
5) φ(x) = ∃y (R(c, y) ∧ f(y) = x) φ(M) = [−1, 1]

6) φ(x) = ∀y R(x, f(y)) φ(M) = {a ∈ R | a ≤ −1} = (−∞,−1]

7) φ(x) = ∀y R(f(x), f(y)) φ(M) = {(2k + 1)π | k ∈ Z}
8) φ(x) = ∀x∃y (f(y) = x) φ(M) = ∅
9) φ(x) = ∃y ∀z R(f(z), y) φ(M) = R

Observe that the next-to-last formula is a sentence (closed formula) that is false in

M, while the last formula is a true sentence in M. ♠

74 CHAPTER 3. FIRST-ORDER LOGIC

3.4 First-Order Theories

In mathematics, the word ‘theory’ refers to all the mathematical consequences of

a set of axioms. It also refers to the collection of properties shared by a class of

structures. By a first-order theory we shall mean the set of all consequences of some

set of sentences in a first-order language which are called the axioms of the theory.

We shall make the notion of a ‘consequence’ precise soon. A first-order structure

satisfying all the axioms of a theory is called a model of the theory. In what follows

we will present well-known mathematical theories by describing their axioms.

Equivalence Relations

The theory of equivalence relations has the following axioms written in the first-order

language L = {R} where R is a binary relation symbol.

1. ∀xR(x, x) (R is reflexive)

2. ∀x ∀y (R(x, y) → R(y, x)) (R is symmetric)

3. ∀x ∀y ∀z ((R(x, y) ∧R(y, z)) → R(x, z)) (R is transitive)

Let A = (A,RA) be an L-structure which satisfies the three axioms above, in other

words, it is a model of these axioms. Then we get the following properties about the

relation RA ⊆ A×A. Let’s denote the three axioms above by φ1, φ2, φ3 respectively.

1. Since A |= φ1, we have for every a ∈ A, the pair (a, a) ∈ RA.

2. Since A |= φ2, we have for every a, b ∈ A, if (a, b) ∈ RA, then (b, a) ∈ RA.

3. Since A |= φ3, we have for every a, b, c ∈ A, if (a, b) ∈ RA and (b, c) ∈ RA,

then (a, c) ∈ RA.

It follows that any structure which is a model of these three axioms is a set together

with an equivalence relation defined on the set. A model of these three axioms is

simply called an equivalence relation. The intuition behind equivalence relations is

that when a pair (a, b) belongs to an equivalence relation it means that the element

a is the same as b in a certain way.

Strict Partial Orders

The theory of strict partial orders has the following axioms written in the language

L = {<} where < is a binary relation symbol. We will write (x < y) for the atomic

formula < (x, y).

3.4. FIRST-ORDER THEORIES 75

1. ∀x¬(x < x) (< is irreflexive)

2. ∀x ∀y ∀z (((x < y) ∧ (y < z)) → (x < z)) (< is transitive)

Strict Linear Orders

The theory of strict linear (total) orders has the axioms of strict partial orders

together with the following axiom.

3. ∀x ∀y ((x < y) ∨ (x = y) ∨ (y < x)) (< is linear or total)

A model of the first two axioms is called a strict partial order and a model of the

three axioms is called a strict linear order. So every linear order is a partial order.

Dense Linear Orders without Endpoints (DLO)

The theory of dense linear orders without endpoints has the axioms of strict linear

orders together with the following two axioms.

4. ∀x ∀y (x < y → ∃z (x < z ∧ z < y)) (< is dense)

5. ∀x ∃y ∃z (y < x ∧ x < z) (No endpoints)

Non-Strict Partial Orders

The theory of non-strict partial order has the following axioms written in the

language L = {≤} where ≤ is a binary relation symbol. We will write (x ≤ y)

for the atomic formula ≤ (x, y).

1. ∀x (x ≤ x) (≤ is reflexive)

2. ∀x ∀y (((x ≤ y) ∧ (y ≤ x)) → (x = y)) (≤ is antisymmetric)

3. ∀x ∀y ∀z (((x ≤ y) ∧ (y ≤ z)) → (x ≤ z)) (≤ is transitive)

Non-Strict Linear Orders

The theory of non-strict linear order has the axioms of non-strict partial orders

together with the following axiom.

4. ∀x ∀y ((x ≤ y) ∨ (y ≤ x)) (≤ is linear or total)

76 CHAPTER 3. FIRST-ORDER LOGIC

Infinite Sets

The theory of infinite sets has infinitely many axioms written in the language of

equality L = {=}. For each integer n ≥ 2, we have an axiom φn which says there

are at least n distinct elements expressed as follows.

φ2 = ∃x1 ∃x2(x1 ̸= x2)

φ3 = ∃x1 ∃x2 ∃x3(x1 ̸= x2 ∧ x1 ̸= x3 ∧ x2 ̸= x3)

In general,

φn = ∃x1 ∃x2 . . . ∃xn
∧

1≤i<j≤n

xi ̸= xj

Thus the axioms for the theory of infinite sets will be the following set of L-sentences.

T = {φn | n ≥ 2}.

Groups

The theory of groups has the following axioms expressed in the language L = {e, ◦}
where e is a constant symbol and ◦ is a binary function symbol. We will write x ◦ y
for the term ◦(x, y).

1. ∀x ∀y ∀z(x ◦ (y ◦ z) = (x ◦ y) ◦ z) (◦ is associative)

2. ∀x ((x ◦ e = x) ∧ (e ◦ x = x)) (e is an identity element)

3. ∀x ∃y ((x ◦ y = e) ∧ (y ◦ x = e)) (Every element has an inverse)

The theory of abelian groups has the previous three axioms together with the

following additional axiom.

4. ∀x ∀y (x ◦ y = y ◦ x) (◦ is commutative)

A model of the first three axioms is called a group and a model of the four axioms

is called an abelian group.

Rings

The theory of rings has the following axioms expressed in the language L = {0,+, ·,−}
where 0 is a constant symbol, + and · are binary function symbols, and − is a unary

function symbol. We will write x + y for the term +(x, y), and write x · y for the

term ·(x, y), and write −x for the term −(x).

3.4. FIRST-ORDER THEORIES 77

1. ∀x ∀y ∀z(x+ (y + z) = (x+ y) + z) (+ is associative)

2. ∀x ((x+ 0 = x) ∧ (0 + x = x)) (0 is an additive identity)

3. ∀x ((x+ (−x) = 0) ∧ ((−x) + x = 0)) (Additive inverses exist)

4. ∀x ∀y (x+ y = y + x) (+ is commutative)

5. ∀x ∀y ∀z(x · (y · z) = (x · y) · z) (· is associative)

6. ∀x ∀y ∀z((x · (y + z) = x · y + x · z) ∧ ((y + z) · x = y · x+ z · x)) (Distributivity)

A model of these six axioms is called a ring.

Commutative Rings with Unity

The axioms of the theory of commutative rings with unity are expressed in the

language L = {0, 1,+, ·,−} where 0 and 1 are constant symbol, + and · are binary

function symbols, and − is a unary function symbol. They include the axioms of

rings plus the following two axioms.

7. ∀x ∀y (x · y = y · x) (· is commutative)

8. ∀x ((x · 1 = x) ∧ (1 · x = x)) (1 is a multiplicative identity called unity)

A model of these eight axioms is called a commutative ring with unity.

Fields

The axioms of the theory of fields are expressed in the language L = {0, 1,+, ·,−,−1 }
where 0 and 1 are constant symbol, + and · are binary function symbols, and − and
−1 are unary function symbols. They include the axioms of commutative rings with

unity plus the following axiom which when satisfied it says that nonzero elements

have multiplicative inverses. We write x−1 instead of −1(x).

9. ∀x (x ̸= 0 → ((x · x−1 = 1) ∧ (x−1 · x = 1)))

A model of these nine axioms is called a field. Suppose that M is a field with an

underlying setM . This means thatM is an L-structure where L = {0, 1,+, ·,−,−1 }
satisfying the nine axioms of the theory of fields. Observe that the triple consisting

of the set M together with 0M and +M forms an abelian group, and the triple

consisting of the set M \ {0M} together with 1M and ·M also forms an abelian

group.

Exercise. Write down the axioms for the theory of ordered fields in the language

L = {0, 1,+, ·,−,−1 , <}.

78 CHAPTER 3. FIRST-ORDER LOGIC

3.5 Logical Consequence

Recall that for an L-formula φ whose free variables are exactly x1, x2, . . . , xn, we

say that an L-structure M satisfies φ if M satisfies the sentence ∀x1 · · · ∀xn φ.

Definition. Fix some first-order language L.

• An L-formula φ is logically valid (or universally valid) if every L-structure
satisfies φ. We write |= φ for this.

• Two L-formulas φ and ψ are logically equivalent if the formula (φ ↔ ψ) is

logically valid. We write φ ≡ ψ for this.

• Let T be a set of L-sentences and let M be an L-structure. We say that M
satisfies T if M satisfies every sentence that belongs to T . In symbols, M |= σ

for every σ ∈ T . When M satisfies T , we also say that M is a model of T

and write

M |= T.

• A set of L-sentences is called satisfiable if it has at least one model.

• Given a set of L-sentences T and an L-sentence φ, we say that φ is a logical

consequence of T , or T logically implies φ, if every model of T is also a model

of φ. For this we write

T |= φ.

• A theory of L or an L-theory is a set T of L-sentences which is satisfiable and

closed under logical consequence, i.e. if T |= φ, then φ ∈ T .

Note. Some authors define a theory to be just a set of sentences; others define

a theory to be a satisfiable set of sentences.

• An L-theory is complete if for every L-sentence σ, either σ ∈ T or ¬σ ∈ T .

Remark. More generally, given a set of L-formulas Γ and an L-formula θ, we say

that θ is a logical consequence of Γ, or Γ logically implies θ, and write Γ |= θ, if for

every L-structure M and every sequence a0, a1, a2, . . . of elements of M respectively

interpreting the variables x0, x1, x2, . . ., if M |= γ with these interpretations for all

γ ∈ Γ, then M |= θ with the same interpretations.

We would like to draw the attention of the reader to the point that the symbol ‘|=’

is used in two ways. On one hand, the statement M |= φ means that the structure

M satisfies the sentence φ. On the other hand, the statement T |= φ means that

the sentence φ is a logical consequence of a set T of sentences.

Logically valid formulas correspond to those statements which are always true because

of their form, regardless of their interpretations. For example, let R be a binary

relation symbol, then the formula (∀xR(x, y) → ∀xR(x, y)) is logically valid.

3.5. LOGICAL CONSEQUENCE 79

Example. Let L = {P} where P is a unary relation symbol. The sentence

(∃xP (x) → ∀xP (x))

is not logically valid. To see this, consider the L-structure M = (N, PM) where PM

is the set of all even natural numbers. Observe that M |= ∃xP (x) since the there

is an element of M which belongs to the set PM, for instance 4 ∈ PM, however,

M ̸|= ∀xP (x) since not every element of M belongs to the set PM, in particular,

5 /∈ PM. Thus, M ̸|= (∃xP (x) → ∀xP (x)), and so (∃xP (x) → ∀xP (x)) is not

satisfied by every L-structure, so it is not logically valid. ♠

Definition. Let L be a first-order language. An L-formula φ is called a tautology of

L if there exists a tautology α in propositional logic built-up from the propositional

variables p1, . . . , pn and there exist first-order formulas ψ1, . . . , ψn of L such that φ

is obtained from α by replacing each occurrence of pi by ψi for all i = 1, 2, . . . , n. In

this case, we say that φ is a substitution instance of α.

Example. Let L = {R} where R is a binary relation symbol. The L-formula

(∃xR(x, y) → ∃xR(x, y)) is a first-order tautology because it can be obtained from

the propositional tautology (p → p) by replacing the propositional variable p with

the L-formula ∃xR(x, y).

Theorem 3.5.1. Every first-order tautology is logically valid.

Proof. Suppose that α is a propositional formula built-up from the propositional

variables p1, p2, . . . , pn, and suppose that ψ1, ψ2, . . . , ψn are first-order formulas of a

language L. Let φ be the L-formula obtained by substituting every ψi for pi in α. Let

M be an L-structure and define the truth assignment δ : {p1, p2, . . . , pn} → {0, 1}
as follows:

δ[pi] =

{
1 if M |= ψi;

0 if M ̸|= ψi.

By induction on the propositional formula α we can show the following claim:

M |= φ if and only if δ[α] = 1.

Now suppose that φ is a tautology of L obtained from a propositional tautology α.

Let M be any L-structure and let δ be the truth assignment defined above. Since

α is a tautology, we get that δ[α] = 1 and thus, by the claim, M |= φ. Therefore,

φ is satisfied in any L-structure, and so φ is logically valid. ■

Definition. A first-order formula which has no quantifiers is called a quantifier-free

formula. A formula is in prenex normal form (PNF) if it is quantifier-free or has

the form

Q1x1Q2x2 . . . Qnxn θ

where each Qi is a quantifier (∀ or ∃), and θ is a quantifier-free formula. The string

of the quantifiers Q1x1Q2x2 . . . Qnxn is called the prefix of the formula.

80 CHAPTER 3. FIRST-ORDER LOGIC

For example,

∃x∀y (P (y) → ¬R(x, y))

is in prenex normal form. However, the formula

∃x (∀y P (y) → ¬R(x, y))

is not in prenex normal form.

Theorem 3.5.2. Any first-order formula is logically equivalent to a formula in

prenex normal form.

Chapter 4

Gödel’s Completeness Theorem

The completeness theorem of first-order logic for countable languages was proved

by Kurt Gödel in his doctoral dissertation in 1930 at the University of Vienna. The

compactness theorem for countable languages was given as a corollary of Gödel’s

work. In 1936 in Russia, Anatoly Mal’cev proved the compactness theorem for

uncountable languages. His proof used Skolem functions and the compactness

theorem for propositional logic. The compactness theorem is regarded as one of

the most important results in logic.

4.1 Substitution of Terms for Variables

Definition. Fix a first-order language L. Let φ be an L-formula, t be an L-term,

and x be a variable.

• By φ(t/x) or φ(t) we denote the formula obtained by replacing every free

occurrence of the variable x in φ by the term t.

• The term t is said to be freely substitutable for x in φ if none of the variables

in t becomes bound in φ(t/x).

Thus, a term t is freely substitutable for x in φ if x has no free occurrences in φ

within the scope of a quantifier ∀y or ∃y where y is a variable occurring in t. In

simple words, it means that t can be substituted for every free occurrence of x in φ

without introducing any interactions between the variables in t and the quantifiers

in φ. Observe that in the case when the variable x is not free in φ, the formula

φ(t) is the same as the original formula φ, and we would still say that t is freely

substitutable for x in φ in this case.

Example. Let L = {f,R} where f is a binary function symbol and R is a binary

relation symbol. Let w, x, y, z be variables. Consider the formula

φ = (∃x ∃w(R(x, ẏ) ∨ ∀z (w = z)) → ∀y R(y, ẋ)).

81

82 CHAPTER 4. GÖDEL’S COMPLETENESS THEOREM

Let t be the term f(w, z). Substitute t for free x in φ to obtain

φ(t/x) = (∃x ∃w(R(x, y) ∨ ∀z (w = z)) → ∀y R(y, f(w, z))).

Moreover, t is freely substitutable for x in φ since the variables w, z of t were not

bound by the quantifier ∀y in φ(t/x).

However, when we substitute the term t for free y in φ we obtain the formula

φ(t/y) = (∃x ∃w(R(x, f(w, z)) ∨ ∀z (w = z)) → ∀y R(y, x))

where t is not freely substitutable for y in φ since now the variable w of the term

t falls within the scope of the quantifier ∃w and so this w of t becomes bound in

φ(t/y). ♠

Theorem 4.1.1. Suppose that φ is an L-formula and t is an L-term freely substitutable

for the variable x in φ. Then the formula

(∀xφ→ φ(t/x))

is logically valid.

The next example explains why we need the term t to be freely substitutable for x

in φ in the hypothesis of the theorem above.

Example. Let L = {g} where g is a unary function symbol. Consider the L-formula

φ = ∃x(g(x) = y).

The universal quantification of φ with respect to y is the formula

∀y φ = ∀y ∃x(g(x) = y)

which says that the interpretation of the function symbol g is a surjective function.

Now consider the term t = x, and substitute t for free y in φ to get the formula

φ(t/y) = ∃x(g(x) = x).

The new formula φ(t/y) says that g has a fixed-point. Observe that t is not freely

substitutable for y in φ. Now consider the L-structure M = (Z, gM) where gM is

the successor function, that is, gM : Z → Z given by gM(n) = n+1 for every n ∈ Z.
Since the successor function is surjective, it follows that M |= ∀y φ. However,

M ̸|= φ(t/y), that is, M ̸|= ∃x(g(x) = x) since the successor function has no

fixed-points. Therefore,

M ̸|= (∀y φ→ φ(t/y)).

Thus, (∀y φ→ φ(t/y)) is not logically valid. ♠

4.2. A PROOF SYSTEM FOR FIRST-ORDER LOGIC 83

4.2 A Proof System for First-Order Logic

To each first-order language L we introduce a formal system SL with the following

axioms and deduction rules.

Axioms of SL

We have the following axiom schemes where φ, ψ, θ are first-order formulas of L.

(Ax 1)
(
φ → (ψ → φ)

)
(Ax 2)

(
(φ→ (ψ → θ)) → ((φ→ ψ) → (φ→ θ))

)
(Ax 3)

(
(¬φ→ ¬ψ) → (ψ → φ)

)
(Ax 4) (∀xφ→ φ(t/x)) where t is a term freely substitutable for x in φ

(Ax 5) (∀x (φ→ ψ) → (φ→ ∀xψ)) where x is not a free variable of φ

(Ax 6) ∀x (x = x)

(Ax 7) (x = y → (φ→ φ′)) where φ is an atomic formula and φ′ is obtained from

φ by replacing some (not necessarily all) occurrences of x in φ by y

Deduction Rules of SL

Modus Ponens. From formulas φ and (φ→ ψ), derive the formula ψ.

(MP)
φ, (φ→ ψ)

ψ

Generalisation. From a formula φ, derive the formula ∀xφ.

(Gen)
φ

∀xφ

Remark. Axiom 4 tells us how to eliminate a universal quantifier. Observe that a

formula of the form (∀xφ→ φ) where x is not a free variable of φ is an instance of

Axiom 4. The Generalisation rule tells us how to introduce a universal quantifier.

Axiom 5 describes how ∀ and → interact with each other. Axiom 6 and Axiom 7

are axioms describing the behaviour of the equality symbol. Axiom 7 says that if

two objects are equal, then any property of the first is also a property of the second.

In a similar fashion as was done in propositional logic we now define a formal proof

in first-order logic.

84 CHAPTER 4. GÖDEL’S COMPLETENESS THEOREM

Definition. Let Γ be a set of first-order formulas and let ψ be a first-order formula.

A derivation (or a proof) of ψ from Γ within the system SL is a finite sequence of

first-order formulas

φ1, φ2, . . . , φn,

where the last formula φn in the sequence is the formula ψ and where each formula

φk in the sequence satisfies one of the following:

(i) φk ∈ Γ;

(ii) φk is one of the axioms of the system SL;

(iii) φk is deduced by MP, i.e. there are formulas φi and φj in the sequence such

that i < k and j < k, and φj = (φi → φk).

(iv) φk is deduced by the Generalisation rule, i.e. φk = ∀xφi where i < k.

Definition. We say that ψ is derivable (or provable) from Γ if there exists a

derivation of ψ from Γ within the system SL. We write

Γ ⊢ ψ

when ψ is derivable from Γ. When ∅ ⊢ ψ we write ⊢ ψ and say that ψ is a theorem

of the system SL. We write φ ⊢ ψ for {φ} ⊢ ψ.

Example. Let φ be an L-formula where a variable y does not appear in φ. Let

φ(y/x) be the formula obtained by replacing every free occurrence of the variable x

in φ by the variable y. Notice that y is freely substitutable for x in φ. Show that

∀xφ ⊢ ∀y φ(y/x).

1. ∀xφ Assumption

2. (∀xφ→ φ(y/x)) Ax 4

3. φ(y/x) MP 1, 2

4. ∀y φ(y/x) Gen 3

For example, take φ to be (R(x, z)∧∃xR(x, x)) where R is a binary relation symbol,

then we get that ∀x (R(x, z) ∧ ∃xR(x, x)) ⊢ ∀y (R(y, z) ∧ ∃xR(x, x)). ♠

Example. Let t be an L-term. Then the atomic formula (t = t) is a theorem of SL.

In symbols,

⊢ (t = t)

1. ∀x (x = x) Ax 6

2. (∀x (x = x) → (t = t)) Ax 4

3. (t = t) MP 1, 2

♠

4.2. A PROOF SYSTEM FOR FIRST-ORDER LOGIC 85

Example. Let x, y be variables. Then

(x = y) ⊢ (y = x)

1. ∀x (x = x) Ax 6

2. (∀x (x = x) → (x = x)) Ax 4

3. (x = x) MP 1, 2

4. (x = y) Assumption

5. ((x = y) → ((x = x) → (y = x))) Ax 7

6. ((x = x) → (y = x)) MP 4, 5

7. (y = x) MP 3, 6

♠

Theorem 4.2.1. Suppose that ψ is a tautology of a first-order language L. Then ψ
is a theorem of the system SL, in symbols, ⊢ ψ.

Proof. Let ψ be a tautology of L. Then there is a tautology α in propositional

logic built-up from propositional variables p1, p2, . . . , pn together with L-formulas

θ1, θ2, . . . , θn such that ψ is obtained from α by replacing every pi with θi for every

i = 1, 2, . . . , n. Since α is a tautology, i.e. |= α, it follows by the completeness

theorem of Propositional Logic that ⊢S α within the system S. This derivation of

α uses only Ax 1, Ax 2, Ax 3, and MP of the system S. Next, we transform this

derivation to a derivation of ψ within the system SL by replacing every propositional

variable pi with the L-formula θi throughout the derivation. The result is a derivation

in SL since Ax 1, Ax 2, Ax 3, and MP are common to both proof systems S and

SL. Therefore, ⊢SL ψ as desired. ■

Example. Here is an application of the proof above. Let φ be any L-formula. The

formula (∀φ → ∀φ) is a tautology of L obtained from the propositional tautology

(p→ p). The derivation below was obtained from the derivation of (p→ p) in S by

replacing every occurrence of p with ∀φ.

1.
(
∀φ → (∀φ→ ∀φ)

)
Ax 1

2.
(
∀φ → ((∀φ→ ∀φ) → ∀φ)

)
Ax 1

3.
(
(∀φ→ ((∀φ→ ∀φ) → ∀φ)) → ((∀φ→ (∀φ→ ∀φ)) → (∀φ→ ∀φ))

)
Ax 2

4. ((∀φ→ (∀φ→ ∀φ)) → (∀φ→ ∀φ)) MP 2, 3

5. (∀φ→ ∀φ) MP 1, 4

Thus (∀φ→ ∀φ) is a theorem of SL.

Ax 7 is restricted to atomic formulas, the next theorem says that we can derive in

the system SL instances of Ax 7 that cover all formulas.

86 CHAPTER 4. GÖDEL’S COMPLETENESS THEOREM

Theorem 4.2.2. Let L be a first-order language and let φ be any L-formula. Denote

by φ′ the formula obtained from φ by replacing some (not necessarily all) of the free

occurrences of x in φ by y, provided that y is freely substitutable for these occurrences

of x. Then

⊢ (x = y → (φ→ φ′)).

We even can show a more general form of the previous theorem.

Corollary 4.2.3. Let L be a first-order language and let φ be any L-formula and t

be any L-term. Denote by φ′′ the formula obtained from φ by replacing some (not

necessarily all) of the free occurrences of x in φ by the term t, provided that t is

freely substitutable for these occurrences of x. Then

⊢ (x = t→ (φ→ φ′′)).

Proof. Let y be a variable not occurring in φ, so y is freely substitutable for x in φ.

Let φ′ be the formula obtained from φ by replacing the free occurrences of x chosen

when forming φ′′ by y. We proceed as follows.

1. (x = y → (φ→ φ′)) Theorem 4.2.2

2. ∀y (x = y → (φ→ φ′)) Gen 1

3. (∀y (x = y → (φ→ φ′)) → (x = t→ (φ→ φ′′))) Ax 4 (t is freely sub. for y)

4. (x = t→ (φ→ φ′′)) MP 2, 3

■

4.3. THE SOUNDNESS THEOREM 87

4.3 The Soundness Theorem

We aim to show that the system SL is sound, that is, the existence of a derivation

of ψ from Γ in SL implies that ψ is a logical consequence of Γ. Consequently, all

theorems of SL are logically valid formulas. As was done in the soundness theorem

of propositional logic, the first step towards establishing the first-order version of

the theorem is to show that all axioms of SL are logically valid.

Theorem 4.3.1. All of the seven axioms of the system SL are logically valid.

Proof. Ax 1, Ax 2, and Ax 3 are first-order tautologies. To see this, Ax 1 is

obtained from the tautology
(
p → (q → p)

)
, Ax 2 is obtained from the tautology(

(p→ (q → r)) → ((p→ q) → (p→ r))
)
, and Ax 3 is obtained from the tautology(

(¬p → ¬q) → (q → p)
)
. Check Lemma 2.3.1 to see that these propositional

formulas are indeed tautologies. By Theorem 3.5.1 we know that every first-order

tautology is logically valid, and so all instances of Ax 1, Ax 2, and Ax 3 of SL are

logically valid first-order formulas.

By Theorem 4.1.1, Ax 4 is logically valid.

Ax 5 is logically valid: exercise.

We now show that Ax 6 is logically valid. To this end, let M be any L-structure
with domain M .

M |= ∀x (x = x) iff for any a ∈M : M |= (x = x) when a/x

iff for any a ∈M : a = a

iff for any a ∈M : (a, a) ∈=M, which is true.

Thus, every L-structure satisfies Ax 6, and so it is logically valid.

Finally, we show that Ax 7 is logically valid. Ax 7 is the formula (x = y → (φ→ φ′))

where φ is an atomic formula and φ′ is obtained from φ by replacing some (not

necessarily all) occurrences of x in φ by y. As φ is atomic, it has the form

R(t1, t2, . . . , tn) where R is an n-ary relation symbol and t1, t2, . . . , tn are L-terms in

the variables, say, x, y, z1, z2, . . . , zk. Let t′ be the term obtained from a term t by

replacing some (not necessarily all) of the occurrences of x in t by y. It follows that

φ′ = R(t′1, t
′
2, . . . , t

′
n). We need to show that Ax 7 is satisfied in every L-structure

under any interpretations of the variables appearing in Ax 7. So let M be any

L-structure with domain M and let a, b, c1, c2, . . . , ck be elements in M interpreting

respectively the variables x, y, z1, z2, . . . , zk. In order to show that M |= Ax 7 when

a/x, b/y, c1/z1, . . . , ck/zk, we assume that M |= (x = y) and M |= φ under these

interpretations, and aim to show that M |= φ′ under the same interpretations. By

induction on terms we can show the following claim.

Claim. Suppose that t = t(x, y, z1, . . . , zn) is an L-term. Under the interpretations

a/x, b/y, c1/z1, . . . , ck/zk, if M |= (x = y), then tM = t′M.

88 CHAPTER 4. GÖDEL’S COMPLETENESS THEOREM

By our assumption M |= (x = y) and the claim, it follows that tMi = t′Mi for each

i = 1, 2, . . . , n. We now proceed as follows where the satisfaction is computed under

the interpretations a/x, b/y, c1/z1, . . . , ck/zk.

M |= φ iff M |= R(t1, t2, . . . , tn)

iff M |= (tM1 , tM2 , . . . , tMn) ∈ RM

iff M |= (t′M1 , t′M2 , . . . , t′Mn) ∈ RM

iff M |= R(t′1, t
′
2, . . . , t

′
n)

iff M |= φ′.

Since M |= φ, it follows that M |= φ′ as well. Thus, we have shown that for

any structure M whenever M |= (x = y) and M |= φ, it must be that M |= φ′.

Therefore, M |= (x = y → (φ→ φ′)) showing that Ax 7 is logically valid. ■

Lemma 4.3.2. Let θ be an L-formula whose free variables are exactly y1, . . . , yk
and let M be an L-structure. Then

M |= θ if and only if M |= ∀x θ

for any variable x.

Proof. We first leave it for the reader to show the special case when the formula is a

sentence. That is, if σ is an L-sentence, then M |= σ if and only if M |= ∀x σ. We

then proceed as follows for an L-formula θ whose free variables are exactly y1, . . . , yk.

M |= θ iff M |= ∀y1 · · · ∀yk θ
iff M |= ∀x ∀y1 · · · ∀yk θ
iff M |= ∀y1 · · · ∀yk∀x θ
iff M |= ∀x θ.

■

Theorem 4.3.3 (Soundness Theorem for SL). Let T be a set of first-order sentences

and let ψ be a first-order formula. If T proves ψ, then T logically implies ψ. In

symbols,

If T ⊢ ψ, then T |= ψ.

Proof. We will show by mathematical induction on the length n of the derivation

the following:

If α1, α2, . . . , αn is a derivation from T in the system SL and M is an L-structure
that satisfies T , then M satisfies αn.

4.3. THE SOUNDNESS THEOREM 89

Base case. Suppose that n = 1 (one-step derivation) and let M be an L-structure
which satisfies T . We need to show that M |= α1. Observe that α1 being the first

formula of a derivation either belongs to T or is an axiom of SL. For the former

case, as M satisfies every formula in T we get M |= α1. For the latter case, by

Theorem 4.3.1, we know that axioms of SL are logically valid, and so satisfied in

every L-structure.

Induction step. Suppose that result holds for all derivations of length strictly less

than n. That is, if β1, β2, . . . , βk is a derivation from T and k < n and M |= T , then

M |= βk. Consider a derivation α1, α2, . . . , αn from T and let M be a structure

which satisfies T . We need to show that M |= αn. The formula αn being in a

derivation either belongs to T , is an axiom of SL, or deduced by Modus Ponens or

by Generalisation rule. If αn is in T or an axiom, then M satisfies αn as discussed

in the base case.

Otherwise, αn may have been deduced in the derivation by Modus Ponens. So there

are previous formulas αi and αj in the derivation such that i < n and j < n and

αj = (αi → αn). By induction hypothesis, we have that M |= αi and M |= αj.

Since M |= αj, i.e. M |= (αi → αn), it follows by definition of satisfaction that

either M ̸|= αi or M |= αn. Since M |= αi, it must be that M |= αn as desired.

We are left with αn being inferred by an application of the Generalisation rule.

Therefore, for some previous formula αi where i < n we have that αn = ∀xαi.
By induction hypothesis, we have that M |= αi. By Lemma 4.3.2, we obtain that

M |= ∀xαi, that is, M |= αn as desired. This completes the induction step and

establishes the theorem. ■

Corollary 4.3.4. Every theorem of the system SL is logically valid. That is,

if ⊢ φ, then |= φ

for every L-formula φ.

As in propositional logic we have the converse of the Deduction Theorem as stated

below.

Lemma 4.3.5. Let Γ be a set of L-formulas, and φ, ψ be L-formulas. Then, if

Γ ⊢ (φ→ ψ), then Γ ∪ {φ} ⊢ ψ.

We now head towards establishing a restricted version of the Deduction Theorem

for the system SL. The Deduction Theorem in its full generality as we know from

propositional logic does not hold for SL as illustrated by the next example.

Example. Let φ be any first-order formula. Then it is clear that φ ⊢ ∀xφ (by a

two-step derivation: the first is φ, an assumption, and the second by an application

of Gen). If the Deduction Theorem in its general form were true for SL we would

90 CHAPTER 4. GÖDEL’S COMPLETENESS THEOREM

expect to have ⊢ (φ → ∀xφ), and so (φ → ∀xφ) is a theorem of SL. By the

Soundness Theorem, if follows that (φ → ∀xφ) is logically valid, i.e true in all

L-structures. However, we will show that this is not the case by giving a structure

where it is not satisfied. The problem arises when we apply the Generalisation rule

with respect to a variable which occurs free in φ.

Let L = {P} where P is a unary relation symbol and let φ = P (x). Consider

the L-structure N = (N, A) where A = PN = {0, 1, 2}. We will show that

N ̸|= (P (x) → ∀xP (x)). Observe that x is the only free variable in (P (x) → ∀xP (x)).
Thus,

N |= (P (x) → ∀xP (x)) iff N |= ∀x (P (x) → ∀xP (x))
iff for any a ∈ N: N |= (P (x) → ∀xP (x)) when a/x
iff for any a ∈ N: N ̸|= P (x) when a/x or N |= ∀xP (x)
iff for any a ∈ N: (a /∈ PN or

for all b ∈ N: N |= P (x) when b/x)

iff for any a ∈ N: (a /∈ PN or for all b ∈ N: b ∈ PN)

iff for any a ∈ N: (a /∈ A or for all b ∈ N: b ∈ A).

The very last statement says that either every natural number does not belong to A

or every natural number belongs to A, which is false. Thus, N ̸|= (P (x) → ∀xP (x)),
showing that (P (x) → ∀xP (x)) is not logically valid. ♠

Theorem 4.3.6 (Deduction Theorem for SL). Let L be a first-order language. For

any set Γ of L-formulas and any L-formula φ and L-formula ψ,

if Γ ∪ {φ} ⊢ ψ and the derivation contains no application of Generalisation rule

involving a variable which occurs free in φ, then Γ ⊢ (φ→ ψ).

Proof. Let Γ be a set of first-order formulas, and φ be a first-order formula. We will

prove the theorem by mathematical induction on the length of the derivation. More

precisely, we will prove by induction on n the following statement:

If α1, α2, . . . , αn is a derivation in SL from Γ ∪ {φ}, then Γ ⊢ (φ→ αn).

The proof is very similar to the proof of the Deduction Theorem of S in propositional

logic, Theorem 2.2.2, with one more part taking care of the Generalisation rule in

the induction step.

Let n > 1 and suppose the result holds for all derivations of length strictly less than

n. We will show that the result holds for derivations of length n, so let

α1, α2, . . . , αn

be a derivation from Γ ∪ {φ} in the system SL that contains no application of

Generalisation rule involving a variable which occurs free in φ. To complete the

4.3. THE SOUNDNESS THEOREM 91

induction step, we need to show that Γ ⊢ (φ → αn) in the case where αn was

inferred by Generalisation rule, i.e. αn = ∀xαi where i < n. It follows that x is

not a free variable of φ, as it is involved in an application of Generalisation rule

in the derivation of αn from Γ ∪ {φ}. By induction hypothesis, we obtain that

Γ ⊢ (φ→ αi). Let θ1, θ2, . . . , θm be a derivation of (φ→ αi) from Γ in SL. We now

construct the following derivation in SL:

1. θ1 *

2. θ2 *
...

...
...

m. (φ→ αi) *

m+ 1. ∀x (φ→ αi) Gen m

m+ 2. (∀x (φ→ αi) → (φ→ ∀xαi)) Ax 5

m+ 3. (φ→ ∀xαi) MP m+ 1, m+ 2

Since the variable x is not free in φ, the use of Ax 5 in the derivation above is correct.

Thus, we constructed a derivation of (φ → αn) from Γ, and so Γ ⊢ (φ → αn) as

desired. This completes the induction step. ■

Example. In SL we will use ∃x to abbreviate ¬∀x¬. Show that for any first-order

formulas α and β we have that

⊢ (∀x(α → β) → (∃xα → ∃xβ)).

We will establish this in two stages. First we will show that

{∀x(α → β),∀x¬β} ⊢ ∀x¬α.

1. ∀x(α → β) Assumption

2. ∀x¬β Assumption

3. (∀x(α → β) → (α → β)) Ax 4

4. (α → β) MP 1, 3

5. ((α → β) → (¬β → ¬α)) Theorem of SL

6. (¬β → ¬α) MP 4, 5

7. (∀x¬β → ¬β) Ax 4

8. ¬β MP 2, 7

9. ¬α MP 6, 8

10. ∀x¬α Gen 9

Since x doe not occur free in ∀x¬β, we deduce by the deduction theorem that

∀x(α → β) ⊢ (∀x¬β → ∀x¬α).

Next we build on this derivation the following derivation.

92 CHAPTER 4. GÖDEL’S COMPLETENESS THEOREM

1. ∀x(α → β) Assumption

2. (∀x¬β → ∀x¬α) Derived above

3. ((∀x¬β → ∀x¬α) → (¬∀x¬α → ¬∀x¬β)) Theorem of SL

4. (¬∀x¬α → ¬∀x¬β) MP 1, 3

This shows that

∀x(α → β) ⊢ (¬∀x¬α → ¬∀x¬β).

That is,

∀x(α → β) ⊢ (∃xα → ∃xβ).

Since x is not free in ∀x(α → β) we can apply the deduction theorem again to get

the desired result,

⊢ (∀x(α → β) → (∃xα → ∃xβ)).

♠

4.4. THE COMPLETENESS THEOREM 93

4.4 The Completeness Theorem

Let L be a first-order language. The completeness theorem states that for any

set T of L-sentences and any L-sentence ψ, if T |= ψ, then T ⊢ ψ. This means

that the axioms and deduction rules of our proof system SL are powerful enough

to capture truth in first-order logic. As we mentioned earlier, the completeness

theorem for countable languages in first-order logic was first proved by the Austrian

mathematician and logician Kurt Gödel in 1930. The proof that we will present

here is based on one produced by the American Logician Leon Henkin in 1949. The

method extends the approach we adopted in establishing the completeness theorem

for propositional logic where first we showed that every consistent set of propositional

formulas is satisfiable as follows.

• Start with a consistent set ∆ of formulas.

• Extend ∆ to a complete set of formulas Σ.

• Use Σ to define a truth assignment δ by setting δ[p] = 1 if and only if Σ ⊢ p

for every propositional variable p.

• Then showed that δ satisfies Σ, and so it satisfies its subset ∆ as well.

• Thus, ∆ is satisfiable.

Definition. A set T of L-sentences is said to be inconsistent if there exists an L-
sentence θ such that T ⊢ θ and T ⊢ ¬θ. And T is consistent if it is not inconsistent.

In a similar fashion, towards showing the completeness theorem for first-order logic,

we will show first that every consistent set T of L-sentences has a model. Once we

have this result we proceed to show the completeness theorem as follows.

Theorem 4.4.1 (Gödel’s Completeness Theorem for SL). For any set of L-sentences
T and any L-sentence ψ,

if T |= ψ, then T ⊢ ψ.

Proof. Suppose that T |= ψ, so every model of T is a model of ψ. It follows that

the set T ∪ {¬ψ} has no model. By Theorem 4.4.2, we get that the set T ∪ {¬ψ}
is inconsistent. Thus, there exists an L-formula θ such that T ∪ {¬ψ} ⊢ θ and

T ∪ {¬ψ} ⊢ ¬θ. By the deduction theorem, it follows that, T ⊢ (¬ψ → θ) and

T ⊢ (¬ψ → ¬θ).

Observe that the formula ((¬ψ → θ) → ((¬ψ → ¬θ) → ψ)) is a first-order tautology

obtained from the propositional tautology ((¬p→ q) → ((¬p→ ¬q) → p)) and so it

is a theorem of SL by Theorem 4.2.1. Using what we already have we now compose

the following derivation from T .

94 CHAPTER 4. GÖDEL’S COMPLETENESS THEOREM

1. (¬ψ → θ) Derived from T

2. (¬ψ → ¬θ) Derived from T

3. ((¬ψ → θ) → ((¬ψ → ¬θ) → ψ)) Theorem of SL

4. ((¬ψ → ¬θ) → ψ) MP 1, 3

5. ψ MP 2, 4

Therefore, T ⊢ ψ as desired. ■

We are left with showing that every consistent set of sentences has a model.

Definition. A set T of L-sentences is called complete if T is consistent and for each

L-sentence φ, either T ⊢ φ or T ⊢ ¬φ.

Definition. A set ∆ of L-sentences has the witnessing property if for any L-formula

φ(x) with free variable x, whenever the sentence ∃xφ ∈ ∆, then φ(c) ∈ ∆ for some

constant symbol c ∈ L. Here φ(c) = φ(c/x) the formula obtained from φ be

replacing every free occurrence of x by c.

Theorem 4.4.2. Every consistent set of L-sentences has a model.

Proof. Let L be a first-order countable language and let Σ be a consistent set of

L-sentences. We expand the language L by adding countably many new constant

symbols ci where i ∈ N to form a new countable first-order language L̂ .

L̂ = L ∪ {c0, c1, c2, c3, . . .}

The remaining part of the proof will be split in three stages.

Stage I. We form a set Σ̂ of L̂-sentences satisfying the following four properties.

1. Σ ⊆ Σ̂.

2. Σ̂ is consistent.

3. Σ̂ is complete.

4. Σ̂ has the witnessing property.

As there are countably many L̂-sentences we enumerate them as

φ0, φ1, φ2, . . .

Towards building Σ̂, we will inductively build a chain

Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · ·

of consistent sets of L̂-sentences. We start by setting Σ0 = Σ which is consistent.

Now suppose that Σn has been constructed and it is consistent. We will next face

one of the following two cases.

4.4. THE COMPLETENESS THEOREM 95

Case (i). Σn ⊢ φn.
Here, there are two subcases. If φn is of the form ∃xψ(x) where ψ(x) is an L̂-formula

with free variable x, then put

Σn+1 = Σn ∪ {φn, ψ(ci)}

for the first new constant symbol ci not appearing in Σn and not appearing in φn.

Otherwise, if φn is not of this form, then put

Σn+1 = Σn ∪ {φn}.

Case (ii). Σn ̸⊢ φn. Then put

Σn+1 = Σn ∪ {¬φn}.

One can check (as we did in propositional logic) that the set Σn+1 is still consistent.

We now form the desired set

Σ̂ =
⋃
n∈N

Σn.

Let us check that Σ̂ has the wanted four properties. First, Σ = Σ0 ⊆ Σ̂. Second, Σ̂

is consistent since every Σn is consistent. Third, Σ̂ is complete. To see this, let θ be

any L̂-sentence, so θ = φn for some n ∈ N. By the construction at step n+1, we see

that either φn ∈ Σn+1 or ¬φn ∈ Σn+1. Finally, we show that Σ̂ has the witnessing

property. Towards this end, suppose that ψ(x) is some L̂-formula with free variable

x and the sentence ∃xψ ∈ Σ̂. Since ∃xψ is an L̂-sentence, there is some n ∈ N such

that φn = ∃xψ. As Σ̂ is consistent, it must be that ¬φn /∈ Σ̂, meaning that Case (i)

had to hold at step n+1, and thus Σn+1 = Σn∪{∃xψ, ψ(c)} for some new constant

symbol c ∈ L̂. Thus ψ(c) ∈ Σ̂ as needed. So Σ̂ has the witnessing property.

Stage II. We build an L̂-structure M̂.

Let C = {ci | i ∈ N} be the set of the new constant symbols. We define a relation

∼ on C by declaring for any ci, cj ∈ C the following

ci ∼ cj if and only if the sentence (ci = cj) ∈ Σ̂.

One can show that ∼ is an equivalence relation on C. Let c̃i denote the equivalence

class of ci, that is,

c̃i = {cj ∈ C | cj ∼ ci}.

We are now ready to define the structure M̂. The underlying set of M̂ is the set

{c̃i | i ∈ N} of all equivalence classes. We now interpret the symbols of L̂ as follows.

• If c ∈ L̂ is any constant symbol, then there is some new constant symbol ci
such that the sentence (c = ci) ∈ Σ̂. Declare cM̂ to be c̃i.

96 CHAPTER 4. GÖDEL’S COMPLETENESS THEOREM

• For any k-ary function symbol f in L̂ and any c̃i1 , c̃i2 , . . . , c̃ik elements from

M̂ we define

fM̂(c̃i1 , c̃i2 , . . . , c̃ik) = c̃j

where c̃j is the unique equivalence class such that the sentence (f(ci1 , ci2 , . . . , cik) = cj)

belongs to Σ̂.

• For any k-ary relation symbol R in L̂ and any c̃i1 , c̃i2 , . . . , c̃ik elements from

M̂ we define

(c̃i1 , c̃i2 , . . . , c̃ik) ∈ RM̂ if and only if R(ci1 , ci2 , . . . , cik) ∈ Σ̂.

Stage III. We show that M̂ is a model of Σ̂.

To show that M̂ |= Σ̂ we will show by induction on L̂-formulas φ(x1, x2, . . . , xn)

that

M̂ |= φ(c̃i1 , c̃i2 , . . . , c̃in) if and only if φ(ci1 , ci2 , . . . , cin) ∈ Σ̂. (†)

for any new constant symbols ci1 , ci2 , . . . , cin .

For the base case, φ(x1, . . . , xn) is an atomic formula, and here the statement (†)
holds by definition of the structure M̂. We leave it to the reader to show that

φ satisfies (†) when φ is built using a propositional connective from two simpler

L̂-formulas satisfying (†).

Now suppose that φ(x1, . . . , xn) = ∃y ψ(x1, . . . , xn, y) and that ψ(x1, . . . , xn, y)

satisfies (†). We need to show that φ satisfies (†). We first show the forward

direction of (†).

M̂ |= φ(c̃i1 , c̃i2 , . . . , c̃in) ⇒ M̂ |= ∃y ψ(c̃i1 , c̃i2 , . . . , c̃in , y)
⇒ there is c̃ ∈ M̂ we have: M̂ |= ψ(c̃i1 , c̃i2 , . . . , c̃in , c̃)

IH
=⇒ ψ(ci1 , ci2 , . . . , cin , c) ∈ Σ̂

⇒ ∃y ψ(ci1 , ci2 , . . . , cin , y) ∈ Σ̂

⇒ φ(ci1 , ci2 , . . . , cin) ∈ Σ̂.

For the converse of (†), we suppose that φ(ci1 , . . . , cin) ∈ Σ̂, and this means that

∃y ψ(ci1 , . . . , cin , y) ∈ Σ̂. Since Σ̂ has the witnessing property, there is a new constant

symbol c such that ψ(ci1 , . . . , cin , c) ∈ Σ̂. By induction hypothesis, we get that

M̂ |= ψ(c̃i1 , . . . , c̃in , c̃), thus M̂ |= ∃yψ(c̃i1 , . . . , c̃in , y), and so M̂ |= φ(c̃i1 , . . . , c̃in).

It remains to show that φ satisfies (†) when φ(x1, . . . , xn) = ∀y ψ(x1, . . . , xn, y) for
some formula ψ(x1, . . . , xn, y) satisfying (†). This is left as an exercise.

Finally, since Σ ⊆ Σ̂, we also get that M̂ |= Σ. Now let M be the ‘reduct’ of M̂

to the language L, that is, M is an L-structure with the same underlying set as M̂
and the interpretation of a symbol in L is the same interpretation given to it in M̂.

Then M is a model of Σ as desired. ■

4.4. THE COMPLETENESS THEOREM 97

At this stage we have all the tools needed to establish the compactness theorem for

first-order logic.

Theorem 4.4.3. Let Σ be a set of L-sentences of a first-order language L. If every
finite subset of Σ has a model, then Σ has a model.

Proof. Suppose that every finite subset of Σ has a model, i.e. Σ is finitely satisfiable.

For the sake of a contradiction, suppose further that Σ does not have a model. By

Theorem 4.4.2, Σ must be inconsistent. So there is an L-sentence θ such that

Σ ⊢ θ and Σ ⊢ ¬θ. Let ∆ ⊆ Σ be the set of all assumptions from Σ used these

two derivations. As derivations are of finite length ∆ has finitely many sentences.

Clearly, ∆ ⊢ θ and ∆ ⊢ ¬θ. By soundness theorem we get that ∆ |= θ and ∆ |= ¬θ.
Since ∆ is a finite subset of Σ we know that ∆ has a model, say M |= ∆. It follows

that M |= θ and M |= ¬θ, a contradiction. Thus Σ must have a model. ■

Corollary 4.4.4. For any set of L-sentences Σ and any L-sentence ψ, if Σ |= ψ,

then there exists a finite subset ∆ ⊆ Σ such that ∆ |= ψ.

Proof. Suppose that Σ |= ψ meaning that every model of Σ is also a model of ψ.

This implies that Σ∪{¬ψ} had no model. By compactness theorem there is a finite

subset ∆ ⊆ Σ ∪ {¬ψ} that has no model. Let ∆0 = ∆ \ {¬ψ} and notice that

∆0 ⊆ Σ. Now as ∆ = ∆0 ∪ {¬ψ} has no model, every model of ∆0 must satisfy ψ,

hence ∆0 |= ψ as desired. ■

Theorem 4.4.5. Suppose that Σ is a set of L-sentences where for every k ∈ N,
there exists m ∈ N with m > k and a finite model of Σ of cardinality m (i.e. Σ has

models of arbitrarily large finite cardinality). Then Σ has an infinite model.

Proof. For n ≥ 2, let φn be the L-sentence expressing the existence of at least n

distinct elements. For example, φ3 is ∃x∃y∃z (x ̸= y∧x ̸= z ∧ y ̸= z). Now consider

the set of L-sentences
Γ = Σ ∪ {φn | n ≥ 2}.

We claim that every finite subset of Γ has a model. Take a finite subset ∆ ⊆ Γ.

Then ∆ = ∆0 ∪ {φi1 , φi2 , . . . , φik} where ∆0 ⊆ Σ and 2 ≤ i1 < i2 < · · · < ik. By

our hypothesis we know that Σ has a model A of cardinality larger than ik. Thus,

A |= ∆. By the compactness theorem, we obtain that Γ has a model M. So M |= Σ

and M |= φn for every n ≥ 2 implying that M has infinitely many elements in its

domain. Hence M is an infinite model of Σ. ■

98 CHAPTER 4. GÖDEL’S COMPLETENESS THEOREM

Chapter 5

Set Theory

The German mathematician Georg Cantor is considered to be the founder of modern

set theory. After paradoxes started to float on the surface of naive set theory such

as Russell’s paradox, Cantor’s paradox, and Burali-Forti paradox, mathematicians

proposed several axiomatic systems in the early twentieth century to study sets. One

of the best known and most studied systems is the Zermelo-Fraenkel Set Theory.

5.1 Zermelo-Fraenkel Set Theory

Our aim is to axiomatize our understanding of sets. We want to see how set theory

can be considered as a first-order theory. What first-order language shall we use to

describe sets? What axioms shall we choose to reflect the behaviour of sets as we

know in everyday mathematics?

All the objects we deal with will be sets. In particular, members of sets will also

be sets. In some cases we will deal with collection of sets which are too large to be

sets, such a collection is called a class. As usual, we will write x ∈ y when a set x

is a member of a set y.

We will express these axioms, called Zermelo-Fraenkel Axioms (ZF), in the first-

order language of set theory L = {∈ } where ∈ is a binary relation symbol. Of course

L contains the equality symbol = as well. An L-structure would be V = (V,∈) where
V is called the universe of sets. Any element of V is called a set and the domain V

itself is a set in the naive sense. The variables x, y, z, . . . represent elements of V so

they stand for sets. Two elements in V are related by the relation ∈ if the first is a

“member” of the second.

Empty Set Axiom. There exists an empty set.

∃x ∀y ¬(y ∈ x)

Extensionality Axiom. Two sets are equal if and only if they have the same

99

100 CHAPTER 5. SET THEORY

members.

∀x∀y (x = y ↔ ∀z (z ∈ x↔ z ∈ y))

Pairing Axiom. If x and y are sets, then there is a set containing exactly them.

That is, whenever x and y are sets, then the unordered pair {x, y} is also a set.

∀x∀y ∃z ∀w (w ∈ z ↔ (w = x ∨ w = y))

Union Axiom. If x is a set, then the collection of all members of members of x is

a set (denoted by
⋃
x).

∀x∃y ∀z (z ∈ y ↔ ∃w(z ∈ w ∧ w ∈ x))

Separation Axiom (or Comprehension Axiom). If x is a set, then the collection

of all members of x satisfying some first-order property is also a set.

For any L-formula φ(z) in one free variable z the following L-sentence is an axiom.

∀x ∃y ∀z (z ∈ y ↔ (z ∈ x ∧ φ(z)))

Power Set Axiom. The power set (collection of all subsets) of any set exists.

∀x ∃y ∀z (z ∈ y ↔ ∀w(w ∈ z → w ∈ x))

Replacement Axiom. If x is a set and f is a function, then the collection of all

images of members of x under f is a set.

For any L-formula φ(u, z) in free variables u, z the following L-sentence is an axiom.

∀x
(
∀u∀z∀w

(
(u ∈ x∧φ(u, z)∧φ(u,w)) → z = w

)
→ ∃y∀z

(
z ∈ y ↔ ∃u (u ∈ x∧φ(u, z))

))
Infinity Axiom. There is an infinite set.

∃x
(
∅ ∈ x ∧ ∀y (y ∈ x→ y ∪ {y} ∈ x)

)
Foundation Axiom. Every nonempty set x contains an element y such that

x ∩ y = ∅.
∀x
(
∃u (u ∈ x) → ∃y (y ∈ x ∧ ¬∃z (z ∈ y ∧ z ∈ x))

)
All the axioms above are the axioms of Zermelo-Fraenkel Set Theory (ZF). The

ZF axioms without the Axiom of Replacement is called Zermelo Set Theory (Z).

Adding another axiom, called the Axiom of Choice, to ZF axioms will give us

Zermelo-Fraenkel Set Theory with the Axiom of Choice abbreviated as ZFC.

Axiom of Choice (AC). For any set x whose members are all nonempty sets, there

exists a function f defined on x, called a choice function, that maps each member y

of x to a member of y.

∀x (¬(∅ ∈ x) → ∃f(Func(f)∧dom(f) = x∧ Im(f) =
⋃

x∧∀y(y ∈ x→ f(y) ∈ y)))

5.1. ZERMELO-FRAENKEL SET THEORY 101

Remark. A function is a set f of ordered pairs such that whenever (x, y) ∈ f and

(x, z) ∈ f , then y = z. We write f(x) = y when the pair (x, y) ∈ f . The domain of

a function f is the set dom(f) = {x | ∃y (x, y) ∈ f} and the image of f is the set

Im(f) = {y | ∃x (x, y) ∈ f}.
ZF proves that a choice function exists for finite sets, however, for certain infinite

sets we need AC.

Here are immediate consequences of ZF axioms.

• The empty set is unique. It is denoted by ∅.
By axioms of Empty Set and Extensionality.

• If x is a set, then {x} is also a set.

By axiom of Pairing.

• If x and y are sets, then so is x ∪ y.
By axioms of Pairing and Union.

• If x and y are sets, then so is x ∩ y.
By axiom of Separation.

• If x is a set, then x ∪ {x} is a set, called the successor of x.

• If x and y are sets, we define the ordered pair (x, y) to be {{x}, {x, y}}, and
it is called Kuratowski pair.

• If x and y are sets, then the ordered pair (x, y) is a set.

By three applications of the Pairing axiom.

• Let x, y, u, v be sets. Then (x, y) = (u, v) if and only if x = u and y = v.

Lemma 5.1.1. If x and y are sets, then the collection of all ordered pairs (u, v)

where u ∈ x and v ∈ y is a set called the cartesian product of x and y and is denoted

by x× y.

Proof. Let x and y be sets (members of a universe of sets V). By Pairing axiom,

{x, y} is a set. By Union axiom, x ∪ y is a set. By Power Set axiom applied twice,

P(P(x ∪ y)) is a set. So if u ∈ x and v ∈ y, then {{u}, {u, v}}, namely the ordered

pair (u, v), is a member of P(P(x∪ y)). Finally, by Separation axiom the collection

of members of P(P(x ∪ y)) of the form (u, v) where u ∈ x and v ∈ y is a set. ■

The Axiom of Foundation gives the following result.

Lemma 5.1.2. No set is a member of itself.

102 CHAPTER 5. SET THEORY

Proof. Let x be a set. By Pairing axiom, {x} is a set. By Foundation axiom, there

is y ∈ {x} such that y ∩ {x} = ∅. But y = x, and so x ∩ {x} = ∅, and hence

x ̸∈ x. ■

Theorem 5.1.3. The following are equivalent in the theory ZF.

(i) Axiom of Choice (AC).

(ii) Well-Ordering Principle (WOP): For any set x there is a well-ordering of x.

(iii) Zorn’s Lemma: Any nonempty partially ordered set in which every chain

(totally ordered subset) has an upper bound contains a maximal element. (See

next section.)

(iv) Tychonoff’s Theorem: The product of any family of compact topological spaces

is compact with respect to the product topology.

(v) Every vector space has a basis.

Let us prove one of the implications in the theorem above.

Theorem 5.1.4. In ZF, the Well-Ordering Principle implies the Axiom of Choice.

Proof. Let x be any set where every one of its members is nonempty. By Union

Axiom, let X = ∪x, so X is the set of all members of members of x. By WOP,

there is a well-ordering relation on X. Let z be any member of x. Then every

member of z is in X, and so z is a nonempty subset of X. Since X is well-ordered

and z is a nonempty subset of X, there is a least element s of z. Consider the

function f which maps every z ∈ x to the least element s of z when z is seen as a

subset of the well-ordered set X. So f : x → X where for any z ∈ x we have that

f(z) is the least element of z. Finally, it remains to show that this function, i.e. the

collection of all such ordered pairs (z, s), is a set. Towards this we need to apply the

Separation Axiom to show that the function f is a subset of the cartesian product

x×X. ■

5.2. WELL-ORDERINGS 103

5.2 Well-Orderings

Definition. A partial order is a binary relation < on a set X which is irreflexive

and transitive. That is,

• For all x ∈ X we have (x ̸< x). (Irreflexivity)

• For all x, y, z ∈ X, if x < y and y < z, then x < z. (Transitivity)

We read x < y as ‘x precedes y’ or as ‘x is less than y’. We call the pair (X,<) a

partially ordered set or poset.

Exercise. Let < be a partial order on X. Define a new relation ≤ on X be setting

x ≤ y if and only if x < y or x = y for any x, y ∈ X. Show that the new relation ≤
is reflexive, antisymmetric, and transitive.

Definition. Let (X,<) be a partially ordered set. An element a ∈ X is called

minimal if there is no element x ∈ X such that x < a. An element b ∈ X is called

maximal if there is no element x ∈ X such that b < x.

Definition. Let (X,<) be a partially ordered set. Two elements x, y ∈ X are called

comparable if x < y or x = y or y < x, otherwise, they are called incomparable.

A poset where every pair of elements are comparable has a special name.

Definition. A total (or linear) order is a partial order < on a set X which further

satisfies that for all x, y ∈ X either x < y or x = y or y < x. In this case, we say

that (X,<) is a totally (or linearly) ordered set.

Example.

• Let X = {2, 3, 4, 5, 6, 7, 8, 9, 10}. Define m < n if and only if m ̸= n and m | n
for every m,n ∈ X. Then (X,<) is a poset which is not a total order. Let <

be the usual order relation of the integers, then (X,<) is a totally ordered set.

The pair 2 and 6 are comparable while the pair 4 and 6 are incomparable. The

elements 8, 9, 10 are maximal elements. The elements 2, 3, 5 are minimal. The

element 7 is both minimal and maximal. The element 4 is neither minimal

nor maximal.

• Let A = {a, b, c} and let S = P(A). Define x < y if and only if x ⊊ y for every

x, y ∈ S. Then (S,<) is a poset which is not a total order. ♠

Definition. A well-order is a total order (X,<) where every nonempty subset of

X has a least element, that is, for any subset Y ⊆ X, if Y ̸= ∅, then there is y0 ∈ Y

such that for all y ∈ Y (y0 ≤ y).

Example. • (N, <) is a well-ordered set. Let’s use 7−→ to denote (N, <).

104 CHAPTER 5. SET THEORY

• (N, <) followed by a point i.e. 7−→ · is well ordered.

• Similarly, 7−→ · · and 7−→ · · · are well-ordered. Also, (N, <) followed by

another (N, <) i.e. 7−→ 7−→ is well-ordered, and so is 7−→ 7−→ · and so on.

• (Z, <) is not a well-ordered set as Z itself is a subset with no least element.

• ([0, 1], <) is not a well-ordered set since the subset (0, 1) has no least element,

also the subset {1, 1
2
, 1

3
, 1

4
, . . .} has no least element, and many others. ♠

Lemma 5.2.1. Any subset Y of a well-ordered set (X,<) is well-ordered by the

restriction of < to Y . The restriction <Y is <X ∩ (Y × Y).

Lemma 5.2.2. Any finite totally ordered set is well-ordered.

Proof. Suppose that (X,≺) is a totally ordered set and X is finite. Towards a

contradiction, suppose that (X,≺) is not well-ordered. Then there exists a nonempty

subset Y ⊆ X which has no least element. As Y is nonempty, pick an element

y0 ∈ Y . As Y has no least element, there is y1 ∈ Y with y1 ≺ y0. Again, as y1 is not

a least element of Y , there is y2 ∈ Y with y2 ≺ y1. Continuing in this fashion we

obtain a sequence · · · ≺ y3 ≺ y2 ≺ y1 ≺ y0 of elements of Y . We claim that yj ̸= yi
whenever j > i. To see this notice as yj ≺ · · · ≺ yi+1 ≺ yi it follows by transitivity

of ≺ that yj ≺ yi, and by irreflexivity we must have that yj ̸= yi. Therefore, there

are infinitely many distinct elements in X, but X is finite, so we get a contradiction.

Thus, (X,≺) is well-ordered. ■

Definition. Let (X,<) and (Y,≺) be partially-ordered sets. An isomorphism

between them is a bijection f : X → Y such that for all x, z ∈ X we have that

x < z if and only if f(x) ≺ f(z).

If there is at least one isomorphism between (X,<) and (Y,≺) we say they are

isomorphic and we write (X,<) ∼= (Y,≺).

Example.

• Let A = {1, 4, 9} and B = {2, 3, 7}. Then (A,<) ∼= (B,<) via the bijection

1 7→ 2, 4 7→ 3, 9 7→ 7.

• ([0, 1], <) ∼= ([0, 2], <) via the bijection x 7→ 2x for every x ∈ [0, 1].

• ([0, 1], <) ̸∼= ([0, 1), <). One needs to show here that it is impossible for an

isomorphism to exist. ♠

Theorem 5.2.3. Let (X,<) and (Y,≺) be well-ordered sets. If (X,<) ∼= (Y,≺),

then the isomorphism between them is unique.

5.2. WELL-ORDERINGS 105

Proof. Let f : X → Y and g : X → Y be two isomorphisms between (X,<) and

(Y,≺). Towards a contradiction assume that f ̸= g. Consider the set of points

where the functions f and g disagree:

A = {x ∈ X | f(x) ̸= g(x)}.

Now A ⊆ X and as f ̸= g we get A ̸= ∅. Since (X,<) is well-ordered, the subset A

has a least element, say a ∈ A. So a is the smallest element of X where f(a) ̸= g(a)

meaning that f and g agree at every point less than a. Let f(a) = v and g(a) = w.

Since v, w ∈ Y , v ̸= w, and (Y,<) is totally ordered either v < w or w < v. Without

loss of generality, suppose that v < w. Since g is surjective there exists x ∈ X such

that g(x) = v. Since (X,<) is totally ordered either x < a, x = a, or a < x. If

x < a, then f and g agree on x and so f(x) = g(x) = v, but then f(x) = f(a)

contradicting the injectivity of f . If x = a, then g assigns to a two different images

v and w contradicting that g is a function. We are left with the case a < x. If

a < x, then g(a) < g(x) since g is an isomorphism, hence w < v. We also know that

v < w, and so we get w < w by transitivity of the order. This contradicts that < is

irreflexive. Therefore, it must be that f(x) = g(x) for every x ∈ X, i.e. f = g. ■

Definition. Let (X,<) be a totally ordered set.

• An initial segment of (X,<) is a subset I ⊆ X such that for any a ∈ I and

x ∈ X, if x < a, then x ∈ I. We also say that I is closed downwards for this.

• Let x ∈ X. Then the initial segment of (X,<) determined by x is

Ix = {y ∈ X | y < x}.

Exercise. Show that Ix is an initial segment of (X,<), i.e. show that Ix is closed

downwards.

Lemma 5.2.4. Let I be a proper initial segment of a well-ordered set (X,<). Then

there is a unique x ∈ X such that I = Ix.

Proof. Let (X,<) be a well-ordered set and let I be a proper initial segment of X,

so I ̸= X. Consider the set A = X \ I which is nonempty since I is a proper subset

of X. By well-ordering, A contains a least element call it a. We claim that I = Ia.

Choose an arbitrary element y ∈ I. Clearly, y ̸= a because y ∈ I and a belongs to

the complement of I. Suppose for contradiction that a < y. But then as I is closed

downwards we must have a ∈ I, a contradiction. By total ordering, we must have

that y < a and so y ∈ Ia showing that I ⊆ Ia. Next take an element x ∈ Ia, and so

x < a. If x /∈ I, then x ∈ A but this contradicts that a is the least element of A,

thus x ∈ I and so Ia ⊆ I. Therefore, I = Ia. We leave to the reader to show that a

is unique. ■

106 CHAPTER 5. SET THEORY

Theorem 5.2.5. Suppose that (X,<) and (Y,≺) are well-ordered sets. Then exactly

one of the following holds:

(i) (X,<) ∼= (Y,≺)

(ii) (X,<) ∼= (Iy,≺) where Iy is a proper initial segment of (Y,≺).

(iii) (Y,≺) ∼= (Ix, <) where Ix is a proper initial segment of (X,<).

Moreover in each of these cases, the isomorphism is unique.

Proof. Start with well-ordered sets (X,<) and (Y,≺). We will define a partial

function f from X to Y , so a function f : A → Y where A ⊆ X, as follows: for

x ∈ X and y ∈ Y we declare f(x) = y if Ix ∼= Iy, in other words, if the initial

segment of (X,<) determined by x is isomorphic to the initial segment of (Y,≺)

determined by y. We leave to the reader to verify the following facts:

• f is well-defined.

• The domain I of f is an initial segment of (X,<).

• The image J of f is an initial segment of (Y,≺).

• f : I → J is an isomorphism between (I,<) and (J,≺).

We next claim that I = X or J = Y . Suppose it is not the case, then both I and

J are proper initial segments of X and Y , respectively. It follows by Lemma 5.2.4

that I is the set of predecessors of some a ∈ X and J is the set of predecessors of

some b ∈ Y , that is, I = Ia and J = Ib. Since f : I → J is an isomorphism we

get by the definition of f that f(a) = b which implies that a ∈ dom(f) = I = Ia.

This contradicts that a /∈ Ia. Therefore, it must be I = X or J = Y . If I = X and

J = Y , then (X,<) ∼= (Y,≺). If I = X and J ̸= Y , then (X,<) is isomorphic to

a proper initial segment J of Y . And finally, if I ̸= X and J = Y , then (Y,≺) is

isomorphic to a proper initial segment I of X.

The uniqueness of f follows from Theorem 5.2.3. ■

5.3. ORDINALS AND CARDINALS 107

5.3 Ordinals and Cardinals

The isomorphism relation forms an equivalence relation on the ‘class’ of all well-

ordered sets. Georg Cantor thought of an ordinal as an equivalence class of well-

ordered sets under the relation of being isomorphic. John von Neumann elegantly

chose a special representative from such an equivalence class to be an ordinal.

Definition. A set X is called transitive if whenever z ∈ y and y ∈ X, then z ∈ X.

A set is transitive if and only if every member of a member is a member if and only

if every member is a subset. The set
{
∅, {∅}, {∅, {∅}}

}
is transitive.

Definition. A set X is an ordinal if X is transitive and (X,∈) is a well-ordered set.

The membership relation ∈ on a set X is the set {(a, b) ∈ X ×X | a ∈ b}. When

(X,∈) is a partially ordered set, then the membership relation ∈ orders the members

of X. So for any a ∈ X and b ∈ X, if a ∈ b, then we think of this as the element

a precedes b and in this case we may write a < b in place of a ∈ b. We also write

a ≤ b when a = b or a ∈ b.

The first examples of ordinals are the natural numbers. We may view a natural

number as an ordinal as follows.

• Define 0 to be ∅, and

• define n+ 1 to be n ∪ {n}.

So 1 is {∅}, and 2 is {∅, {∅}} and 3 is {∅, {∅}, {∅, {∅}}}, and so on. All these sets

are ordinals. For instance to see that the set 3 is well-ordered by the membership

relation ∈ observe that

∅ ∈ {∅} ∈ {∅, {∅}} and ∅ ∈ {∅, {∅}}.

So we may write ∅ < {∅} < {∅, {∅}} or simply 0 < 1 < 2. Hence the pair (3,∈) is a
well-ordered set. The set 3 is also transitive and so 3 is an ordinal.

Let α and β be ordinals. We will write α ∼= β when the well-ordered sets (α,∈) and
(β,∈) are isomorphic.

Theorem 5.3.1. The following hold.

(i) Any member of an ordinal is an ordinal.

(ii) Any member α of an ordinal β is the set of predecessors of α in β, i.e.

α = {x ∈ β | x ∈ α}.

(iii) For any ordinals α and β, if α ∼= β, then α = β.

108 CHAPTER 5. SET THEORY

(iv) For any ordinals α and β, exactly one of the following holds:

α = β or α ∈ β or β ∈ α.

(v) Any nonempty set of ordinals has a least element with respect to the membership

relation ∈.

(vi) Any transitive set of ordinals is an ordinal.

Proof. (i) Let α be an ordinal and let x ∈ α. Since α is transitive, we get x ⊆ α.

As (α,∈) is well-ordered and x ⊆ α the restriction of the relation ∈ to x is a well-

ordering of x and so (x,∈) is a well-ordered set. Next we need to show that x is a

transitive set. So suppose that z ∈ y and y ∈ x. Since x ∈ α and α is a transitive

set, y ∈ α. But z ∈ y, and again by transitivity of α, we must have z ∈ α. We now

have that x, y, z are members of α. But ∈ is a transitive relation on the members

of α, and since z ∈ y and y ∈ x we get that z ∈ x, hence x is a transitive set. Thus

x is an ordinal.

(ii) Let β be an ordinal and let α ∈ β. Consider the set A = {x ∈ β | x ∈ α} of all

predecessors of α in β. Clearly, A ⊆ α. Now let x ∈ α. Since β is transitive and

α ∈ β, it follows that x ∈ β, and so x ∈ A. Thus α ⊆ A. This shows that α = A.

(iii) Suppose that α and β are ordinal in which α ∼= β. Let f : α → β be the

unique isomorphism. We claim that f(x) = x for all x ∈ α i.e. f is the identity

map. Towards a contradiction, assume that f is not the identity map and let

A = {x ∈ α | f(x) ̸= x}. Since A is a nonempty subset of a well-ordered set α it

has a least element, say a ∈ A. So f(x) = x for all x ∈ a. Let f(a) = b where a ̸= b.

Using (ii) and that f is a bijection preserving the order ∈ and also it is the identity

map on members of a we get the following:

f(a) = b = {y ∈ β | y ∈ b}
= {f(x) | x ∈ α ∧ x ∈ a}
= {x | x ∈ α ∧ x ∈ a}
= {x ∈ α | x ∈ a} = a.

Thus b = a, a contradiction. Therefore f : α → β is a bijection and f(x) = x for all

x ∈ α. It follows that

β = f(α) = {f(x) | x ∈ α} = {x | x ∈ α} = α

as desired.

(iv) Let α and β be ordinals. By Theorem 5.2.5 we have three cases. First case: α

and β are isomorphic and so by (iii) we get that α = β. Second case: α is isomorphic

to a proper initial segment of β which by (ii) must be a member y of β which itself

is an ordinal. So α ∼= y and y ∈ β. By (iii), we get α = y and so α ∈ β. Third

5.3. ORDINALS AND CARDINALS 109

case: β is isomorphic to a proper initial segment of α, but then in a similar fashion

we get that β ∈ α.

(v) Let S be a nonempty set of ordinals. Choose an ordinal α ∈ S. If α ∩ S = ∅,
then α is a ∈-least element of S. Otherwise, α ∩ S is a nonempty subset of α and

so has a ∈-least element, say β. Then β is a ∈-least element of S.

(vi) Let X be a transitive set of ordinals. By (iv) and (v) we get that (X,∈) is a

well-ordering. So X is an ordinal. ■

Theorem 5.3.2. Any well-ordered set is isomorphic to a unique ordinal (α,∈).

Proof. Let (X,<) be a well-ordered set. Let a ∈ X and recall that Ia is the initial

segment of X determined by a. If (Ia, <) ∼= (α,∈) for some ordinal α, then such α is

unique by Theorem 5.3.1(iii). Let A ⊆ X be the set of all elements a of X such that

(Ia, <) ∼= (α,∈) for some ordinal α. We now define a function f on A where for any

a ∈ A we declare f(a) = α where α is the unique ordinal such that (Ia, <) ∼= (α,∈).
Let S be the image of f , that is, S = {f(a) | a ∈ A} and notice that S is a set of

ordinals. One can show that

• A is an initial segment of X.

• S is a transitive set and so S is an ordinal itself by Theorem 5.3.1(vi).

• f : (A,<) → (S,∈) is an isomorphism.

Now for the sake of contradiction suppose that A is a proper initial segment, and

so A ̸= X. Then A = Ix for some x ∈ X. Thus f is an isomorphism between Ix
and the ordinal S, and so x ∈ A. But A = Ix = {y ∈ X | y < x} and so x < x

contradicting that < is irreflexive. Therefore, it must be that A = X, and so (X,<)

is isomorphic to the ordinal S. Finally, by Theorem 5.3.1(iii) such an ordinal is

unique. ■

Definition. Let α be an ordinal. The successor of α is the set α ∪ {α} and we

denote it by α + 1.

Lemma 5.3.3.

(i) If α is an ordinal, then its successor α + 1 is an ordinal as well.

(ii) If S is a set of ordinals, then
⋃
α∈S

α is an ordinal.

The membership relation ∈ is a well-ordering relation on the class of all ordinals,

that is, it is a total order where every nonempty class of ordinals has a least element

with respect to the relation ∈. Let’s check this. First, α ̸∈ α for any ordinal α as

no set is a member of it self, so ∈ is an irreflexive relation. Second, suppose that

110 CHAPTER 5. SET THEORY

α, β, γ are ordinals where α ∈ β and β ∈ γ. Since is γ is a transitive set, we get that

α ∈ γ, so ∈ is a transitive relation on the class of all ordinals. Third, by Theorem

5.3.1(iv) we get that ∈ is a total relation on the class of ordinals. Thus, ∈ is a total

order on the ordinals. It remains to show it is also a well-order.

Notation. When α and β are ordinals we write α < β in place of α ∈ β. Similary,

we write α ≤ β for α ∈ β or α = β.

Definition. A successor ordinal is an ordinal β such that β ̸= 0 and there exists

an ordinal α such that β = α + 1.

Definition. A natural number is an ordinal α such that for every β ≤ α, either

β = 0 or β is a successor ordinal.

Observe that the sets 0, 1, 2, . . . as were defined above are natural numbers.

Lemma 5.3.4. There is a set which contains precisely all the natural numbers. We

call this set ω. Moreover, ω is an ordinal.

Proof. Let y be a set as in the Axiom of infinity. So 0 ∈ y and if x ∈ y, then

x + 1 ∈ y. We claim that every natural number is a member of y. For the sake

of contradiction, suppose not. Let α be a natural number which is not in y. By

Theorem 5.3.1(v) we may take α to be the least natural number not in y. Clearly,

α ̸= 0 and so α must be a successor ordinal. Hence there is an ordinal x such that

α = x+ 1. Since x < α (i.e. x ∈ α) and by the choice of α, the ordinal x ∈ y. But

then by the property of y, we get that x+1 ∈ y and so α ∈ y, a contradiction. Thus

y contains all natural numbers. Finally, by the Separation Axiom, the collection of

all members of y satisfying the property of being a natural number is a set, denoted

by ω.

As any member of natural number is a natural number, the set ω is a transitive set.

Thus by Theorem 5.3.1(vi) we get that ω is itself an ordinal. ■

Observe that ω is not a successor ordinal since if so then ω will be the successor

of a natural number and so a natural number itself, and so it will be a member of

itself contradicting that ∈ is irreflexive. Nonzero ordinals which are not successor

ordinals are called limit ordinals. The ordinal ω is the least limit ordinal. Here is

the beginning of the list of ordinals:

0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, . . . , ω + ω, . . . , ω2 . . . , ω3, . . . , ωω, . . . , ωω
ω

,

We now introduce a special type of ordinals called cardinals.

Definition. For any sets X and Y , we say that X is equinumerous to Y and write

X ∼ Y if there exists at least one bijective function f : X → Y .

5.3. ORDINALS AND CARDINALS 111

Theorem 5.3.5 (Schröder–Bernstein Theorem). Let X and Y be sets. If there

exists an injective function from X to Y , and an injective function from Y to X,

then X and Y are equinumerous.

The reader needs to check that ∼ is an equivalence relation on sets. An equivalence

class of this relation contains all sets of the same ‘size’. For example, ω ∼ ω + 1, so

both ω and ω + 1 belong to the same equivalence class. We aim to single out one

special member from every such equivalence class.

Working in ZFC, by the well-ordering principle we know that every set X admits a

well-ordering≺. By Theorem 5.3.2, there exists an ordinal α such that (X,≺) ∼= (α,∈),
and therefore X ∼ α. Thus every set is equinumerous to some ordinal.

Definition. Let X be any set. We define the cardinality of X, denoted by |X|, to
be the least ordinal α that is equinumerous to X.

So one may think of cardinality as a mapping which assigns to every set an ordinal.

Moreover, since the identity mapping is a bijective function we have that |α| ≤ α

for any ordinal α. Those ordinals which match their own cardinality are special.

Definition. A cardinal is an ordinal κ such that |κ| = κ.

Lemma 5.3.6. Every natural number is a cardinal.

Proof. We will show by induction on the natural numbers that for any natural

number n, there is no injective function from n into some m where m < n. Clearly,

this holds for 0 as there is no ordinal less than 0. Now let n ∈ ω and assume that

the property holds for n. We need to show it holds for n+1 = n∪{n}. Suppose not,
hence there is some natural number k < n+1 and an injective function f : n+1 → k.

Since k cannot be 0, it must be a successor ordinal and so k = m+1 for some natural

number m. Consider the following function h : n → m defined as follows for every

i ∈ n:

h(i) =

{
f(i) if f(i) < m;

f(n) if f(i) = m.

One can check that h is an injective function from n to m, but m < k and k < n+1

and so m < n, contradicting the induction hypothesis. Thus, there is no injective

function from n+1 into a smaller natural number. It follows that there is no bijection

from a natural number n into a smaller natural number m, and hence the smallest

ordinal equinumerous to n is n itself, i.e. |n| = n. Therefore, every natural number

is a cardinal. ■

Corollary 5.3.7. The ordinal ω is a cardinal. (It is the first infinite cardinal.)

Proof. We need to show that cardinality of ω is ω, in symbols, |ω| = ω. For the sake

of contradiction, suppose that there is a bijection f from ω to some natural number

112 CHAPTER 5. SET THEORY

n. Since n+1 ∈ ω and so n+1 ⊆ ω, the restriction of f to n+1 induces an injective

function from n + 1 to n contradicting the previous lemma. Thus there exists no

bijection from ω to a smaller ordinal, and so the least ordinal equinumerous to ω is

ω itself and so |ω| = ω showing that ω is a cardinal. ■

Remark. When the ordinal ω is viewed as a cardinal we denote it by ℵ0. The first

cardinal that is bigger than ℵ0 is called ℵ1.

The theory of ZFC is incomplete, that is, there is a sentence in the language of set

theory which is not a logical consequence of ZFC nor its negation is. An example of

such a sentence is the Continuum Hypothesis (CH) which was proposed by Georg

Cantor in 1878 and it says that the cardinality of the power set of ℵ0 is ℵ1, in symbols,

CH states that |P(ℵ0)| = ℵ1 or 2ℵ0 = ℵ1. Kurt Gödel proved that ZFC ̸|= ¬CH

(there is a model of ZFC which satisfies CH), and Paul Cohen introduced the

technique of forcing to prove that ZFC ̸|= CH (there is a model of ZFC which

satisfies the negation of CH). Consequently, we say thatCH is independent of ZFC.

Cohen received the Fields medal in 1966 for his work on the continuum hypothesis.

Daoud Siniora

	Propositional Logic
	Syntax of Propositional Logic
	Words over an Alphabet
	Propositional Formulas
	Proofs by Induction on Formulas
	Unique Decomposition Theorem
	Substitutions in Propositional Formulas

	Semantics of Propositional Logic
	Truth Assignments
	Tautologies and Logical Equivalence
	Disjunctive Normal Form

	Logical Consequence

	Soundness and Completeness
	Proof Systems
	The Deduction Theorem
	The Soundness Theorem
	The Completeness Theorem
	The Compactness Theorem

	First-Order Logic
	First-Order Structures
	Languages and Structures
	Substructures
	Isomorphisms

	Syntax of First-Order Logic
	Terms
	First-Order Formulas
	Free Variables and Bound Variables

	Semantics of First-Order Logic
	Interpretation of Terms
	Satisfaction of Formulas

	First-Order Theories
	Logical Consequence

	Gödel's Completeness Theorem
	Substitution of Terms for Variables
	A Proof System for First-Order Logic
	The Soundness Theorem
	The Completeness Theorem

	Set Theory
	Zermelo-Fraenkel Set Theory
	Well-Orderings
	Ordinals and Cardinals

