1

Note:

You are expected to write proofs for the exercises that ask you to compute or to find something.

Exercise 1

Use the decomposition trees to find all subformulas of each of the following formulas :

- 1. $\neg(\neg p \leftrightarrow r)$
- 2. $((p \land r) \rightarrow (\neg p \leftrightarrow q))$
- 3. $\neg((\neg r \lor (r \land \neg p)) \leftrightarrow \neg \neg \neg q)$

Exercise 2

Show that number of occurrences of the symbol \wedge in a formula φ is less than or equal to the number of closing parenthesis.

Exercise 3

- 1. Let δ be the truth assignment defined on the set of propositional variables $\{p, q, r\}$ by $\delta(p) = 1$, $\delta(q) = 0$, $\delta(r) = 0$. Find the truth value under δ of each of the following formulas:
 - (a) $\psi(q) = \neg q$
 - (b) $\theta(p,r) = (\neg p \lor r)$
 - (c) $\gamma(p,r) = (p \leftrightarrow (\neg r \rightarrow p))$
- 2. Find the formula $\gamma(\gamma/p,\,\theta/r)$

Exercise 4

Show that for any formula $\varphi,$ we have that $h[\neg\varphi]=h[\varphi]+1.$

Exercise 5

Show that for any $\varphi, \psi \in \mathcal{F}$: $\varphi \equiv \psi$ if and only if $(\phi \leftrightarrow \psi)$ is a tautology.

Exercise 6

- 1. For any truth assignments δ and λ and any formula $\varphi(p_1, p_2, ..., p_n)$, if δ and λ agree on the set $\{p_1, p_2, ..., p_n\}$, prove that $\delta[\varphi] = \lambda[\varphi]$.
- 2. Suppose |P| = n for some positive integer n. Compute $|\mathcal{F}/_{\equiv}|$ (i.e How many \equiv -equivalence classes on \mathcal{F} are there?).

(5+5+5)

(10)

(5+5+5+5)

(15)

(20)

(10+10)