Note:

You are expected to write proofs for the exercises that ask you to compute or to find something.

Exercise 1

Determine which of the following logical equivalences hold:

1.
$$\neg (p \land r) \equiv (\neg p \lor \neg r)$$

2.
$$((p \land q) \land r) \equiv (p \land (q \land r))$$

3.
$$((p \lor q) \lor r) \equiv (p \lor (q \lor r))$$

4.
$$((p \rightarrow q) \rightarrow r) \equiv (p \rightarrow (q \rightarrow r))$$

Exercise 2

Determine for each of the following formulas whether they are tautologies, contradictions or neither. Then find, for each, an equivalent formula in DNF.

1.
$$(p \lor \neg p)$$

2.
$$(((p \to q) \land \neg q) \to \neg p)$$

3.
$$((\neg p \rightarrow p) \leftrightarrow p)$$

4.
$$(\neg p \rightarrow (\neg q \leftrightarrow (q \rightarrow p)))$$

Exercise 3

For a formula ϕ built up using the connectives $\{\neg, \land, \lor\}$, let ϕ^* be constructed by replacing any literal by its negation (i.e replacing it with a negation symbol concatenated by the same literal).

1. For any truth assignment δ , let δ^* be the truth assignment defined for any propositional variable p as follows:

$$\delta^*(p) = \begin{cases} 1 & if\delta(p) = 0\\ 0 & if\delta(p) = 1 \end{cases}$$

Show that $\delta(\phi) = \delta^*(\phi^*)$. [Hint: This is a statement about all formulas of a certain sort]

2. Show that ϕ is a tautology if and only if ϕ^* is a tautology.

(30)

(25)

(20)