Note:

You are expected to write proofs for the exercises that ask you to compute or to find something.

Exercise 1

Decide which of the following are derivable in S:

1. $\neg(q \rightarrow \neg p) \vdash ((\neg q \rightarrow p) \rightarrow \neg(q \rightarrow \neg p))$ **2.** \vdash (($p \rightarrow (p \rightarrow \neg r)$) \rightarrow ($q \rightarrow r$))

Exercise 2

Show which of the following are consistent and which are not:

1.
$$\{\neg (p \to q), \neg (q \to r)\}$$

2. $\{(p \to q), (q \to r), (r \to \neg p)\}$
3. $\{\neg (p \to q), q\}$

Exercise 3

Let Γ be a set of formulas and put $\Sigma = \{\varphi \mid \Gamma \vdash \varphi\}$. Show that $\Gamma \vdash \varphi$ if and only if $\Sigma \vdash \varphi$.

Exercise 4

Let $\delta : \mathcal{F}^* \to \{0,1\}$ be a truth assignment and put $\Sigma_{\delta} = \{\varphi \in \mathcal{F}^* \mid \delta[\varphi] = 1\}$. Show that Σ_{δ} is complete.

Exercise 5

Definition: Let Γ be a set of propositional formulas. We say that Γ is independent if for every formula $\phi \in \Gamma$ we have $\Gamma \setminus \{\phi\} \not\models \phi$.

- 1. Is the empty set independent?
- 2. Which singletons are independent and which are not? Provide necessary and sufficient condition for a singleton to be independent (i.e. if and only if condition).
- 3. We define $\Gamma, \Delta \subseteq \mathcal{F}$ to be equivalent when for each truth assignment δ, δ satisfies Γ if and only if it satisfies Δ . Show that every finite set of formulas has at least one independent equivalent subset.
- 4. Show that a set of formulas is independent if and only if every finite subset of it is independent.
- 5. Are maximally consistent sets independent?
- 6. Provide necessary and sufficient condition for inconsistent sets to be independent.

(8+8)

(8+8+8)

(7+13+20+20+20+20)

(20)