Mathematical Logic Assignment 7

Note:

You are expected to write proofs for the exercises that ask you to compute or to find something. You may use any Latin letter (with or without index subscript) as a variable.

Exercise 1

(5+5+5+5)

(7+7+8+8)

AUC

Let $\mathcal{L} = \{a, b, c, f, R\}$ where a, b, and c are constants symbols, f is a binary function symbol, and R is a binary relation. Consider the structure $\mathcal{M} = \{\mathbb{Q}, 1, 2, 3, +, <\}$. Consider the following formulas:

- 1. $\forall x \exists y (f(x, y) = a)$
- **2.** $\forall x \neg R(x, a)$
- **3.** $\forall x (R(b,a) \rightarrow (R(f(x,b), f(x,a))))$
- 4. $\forall x \,\forall y \, (f(x,y) = z)$

Which of these formulas are satisfied in M? (Show with proof)

Exercise 2

Let $\mathcal{L} = \{a, b, f, g, R\}$ such that a, b are constant symbols, f, g are binary function symbols, and R is a binary relations symbol. Consider the \mathcal{L} -structure $(\mathbb{N}, 0, 1, +, \cdot, <)$. Express each of the following properties about elements in \mathbb{N} with an \mathcal{L} -formula.

- 1. 0 is the smallest natural number.
- 2. $\varphi(x, y)$ saying x divides y.
- 3. $\psi(x, y, z)$ saying z is the greatest common divisor of x and y.
- 4. $\theta(x)$ saying x is a prime number.

Note: For space reasons, you can use a formula from *n* to write a formula that answers n + m where m > 0.

Exercise 3

Let $\mathcal{L} = \{g\} \cup \{f_r \mid r \in \mathbb{R}\}$ where g is a binary function symbol and each f_r is a unary function symbol. A vector space \mathcal{V} can be viewed as an \mathcal{L} -structure by interpreting g as vector addition and f_r is interpreted it as scalar multiplication by r, that is, $f_r^{\mathcal{V}} : V \to V$ given by $f_r^{\mathcal{V}}(v) = rv$ for every vector $v \in V$. Write down axioms of real vector spaces in the first-order language \mathcal{L} (i.e. provide a set of \mathcal{L} -sentences Γ in which an \mathcal{L} -structure $\mathcal{M} \models \Gamma$ if and only if M is a real vector space with the operations given by the interpretations in \mathcal{M}).

Exercise 4

If $\Gamma \models \forall x \varphi(x)$ then $\Gamma \models \varphi(\tau)$, for any term τ . Prove or disprove this statement. **Hint:** consider $\varphi(x) = \exists y \neg (x = y)$ (40)

(10)