Note:

You are expected to write proofs for the exercises that ask you to compute or to find something.

Exercise 1

Find derivations for each of the following in $\mathcal{S}_{\mathcal{L}}$:

1. $\vdash (x = y \rightarrow (y = z \rightarrow x = z))$

2. $\vdash (\forall x \forall y \varphi \rightarrow \forall y \forall x \varphi)$

Exercise 2

Show that axiom 5 of the system $\mathcal{S}_{\mathcal{L}}$ is logically valid.

Exercise 3

Let Σ be a set sentences which are only satisfiable by finite models. Use **only** the compactness theorem to show that there is $n \in \mathbb{Z}^+$ such that for any model \mathcal{M} of Σ , the cardinality of M is at most n.

Exercise 4

- 1. Let $x_1, x_2 \dots x_n$ be sets. Show that $\bigcup_{i=1}^n x_i$ is also a set.
- 2. Let x and y be sets. Show that the Cartesian product $x \times y$ is also a set, where (x, y) is $\{\{x\}, \{x, y\}\}$.

(10+10)

(20)

(25)

(15+20)