# Chapter 6 - Section 7 

Mostafa Touny

January 8, 2024

## Contents

Exercises ..... 2
3 ..... 2
4 ..... 4

## Exercises

## 3

Fact. Given a set $A$ of distinct elements in a random order, The positition of the maximum element of a subset $S \subset A$ is uniform in $S$.

Define indicator random variables $L_{i}$ as

$$
L_{i}= \begin{cases}1 & a_{i}>a_{i-1}, a_{i-2}, \ldots, a_{1} \\ 0 & a_{i}<a_{j}, \text { for some } j=1,2, \ldots, i-1\end{cases}
$$

So $L_{i}=1$ if and only if the ith item $a_{i}$ is the maximum in subset $A[1: i]$.
It follows $\operatorname{Pr}\left[L_{i}=1\right]=1 / i$ and $E x[L i]=1 / i$.
Let $X$ be a random variable for the number of times the line a[first] > a[max_loc] returns True. Observe $X=L_{2}+L_{3}+\cdots+L_{n}$. So $E x[X]=1 / 2+\cdots+1 / n=H(n)-1 \approx$ $\ln n-1$.
$H(n)$ here is the nth harmonic sum.

## 4

a
Note. Our solution was initially flawed until we read the description of exercise 6 which gave the correct answer. We only reconstructred the proof given the answer.

Fact 1. On the ith step of the first pass of bubble-sort, $A[i]$ is the maximum element among $A[0: i]$.
Fact 2. Given $A$ is a set of distinct elements in a random order, The probability of $A[i]$ being the maximum element of $A[0: i]$ is $\frac{1}{i+1}$.
Let $R_{i}$ be an indicator random variable, Indicating whether $A[i]>A[i+1]$, at the ith step of the loop. From Fact $1, R_{i}=1$ if and only if $A[i+1]$ is not the maximum among $A[0: i+1]$. The probability of that event is $\frac{i+1}{i+2}$ from Fact 2.

Clearly $\operatorname{Ex}\left[R_{i}\right]=\frac{i+1}{i+2}$. It follows $W=\sum_{i=0}^{n-2} R_{i}=\frac{1}{2}+\frac{2}{3}+\cdots+\frac{n-1}{n}$.

## b

That event happens if and only if

- $\max (A[1], A[2])<A[3]$. Its probability is $\frac{2}{3}$. Or
- $\max (A[1], A[2])>A[3]$ and $A[1]<A[3]$. Its probability is $\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6}$.

So the probability $A[1]<A[2]$ after the first pass of bubble-sort is $\frac{2}{3}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3}$.

## 5

Fact. Given a randomly ordered $A$, Any $A[: K]$ is also randomly ordered.
Fact. Uniformly $A[k] \in\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ where $q_{i} \in A[: k]$ and $q_{1}>q_{2}>\cdots>q_{k}$.
In kth iteration, $A[1: k-1]$ is sorted, and $A[k]$ will be uniformly displaced to position $\quad k, k-1, \ldots, 1$. Respectively, \#comparisons $=1,2, \ldots, k$. Respectively, Denote total number of comparisons \#assignments $=0,1, \ldots, k-1$.
by $C$ and comparisons in kth iteration by $C_{k}$. Similarly $A$ and $A_{k}$ for assignments. In expectation

$$
\begin{aligned}
& E x\left[C_{k}\right]=\frac{1}{k}(1+\cdots+k)=\frac{1}{k} \frac{k \cdot k+1}{2}=\frac{k+1}{2} \\
& E x\left[A_{k}\right]=\frac{1}{k}(1+\cdots+k-1)=\frac{1}{k} \frac{(k-1) k}{2}=\frac{k-1}{2}
\end{aligned}
$$

Clearly $C=\sum_{k=2}^{n} C_{k}$ and $A=\sum_{k=2}^{n} A_{k}$. So

$$
\begin{aligned}
E x[C] & =\sum_{k=2}^{n} \frac{k+1}{2} \\
& =\frac{1}{2} \sum_{k=2}^{n} k+1 \\
& =\frac{1}{2}\left[\left(\sum_{k=1}^{n+1} k\right)-1-2\right] \\
& =\frac{1}{2}\left[\frac{(n+1)(n+2)}{2}-3\right] \\
& =\frac{(n+1)(n+2)}{4}-\frac{3}{2} \\
E x[A] & =\sum_{k=2}^{n} \frac{k-1}{2} \\
& =\frac{1}{2} \sum_{k=2}^{n} k-1 \\
& =\frac{1}{2} \sum_{k=1}^{n-1} k \\
& =\frac{1}{2} \frac{n(n-1)}{2} \\
& =\frac{n(n-1)}{4}
\end{aligned}
$$

