Chapter 6 - Section 7

Mostafa Touny

January 8, 2024

Contents

Exer	Exercises															2														
3																	•	 												2
4						•							•			•	•					•		 •						4

Exercises

3

Fact. Given a set A of distinct elements in a random order, The positition of the maximum element of a subset $S \subset A$ is uniform in S.

Define indicator random variables L_i as

$$L_i = \begin{cases} 1 & a_i > a_{i-1}, a_{i-2}, \dots, a_1 \\ 0 & a_i < a_j, \text{ for some } j = 1, 2, \dots, i-1 \end{cases}$$

So $L_i = 1$ if and only if the ith item a_i is the maximum in subset A[1:i].

It follows $Pr[L_i = 1] = 1/i$ and Ex[Li] = 1/i.

Let X be a random variable for the number of times the line $a[first] > a[max_loc]$ returns True. Observe $X = L_2 + L_3 + \cdots + L_n$. So $Ex[X] = 1/2 + \cdots + 1/n = H(n) - 1 \approx \ln n - 1$.

H(n) here is the nth harmonic sum.

4

a

Note. Our solution was initially flawed until we read the description of *exercise* 6 which gave the correct answer. We only reconstructed the proof given the answer.

Fact 1. On the ith step of the first pass of bubble-sort, A[i] is the maximum element among A[0:i].

Fact 2. Given A is a set of distinct elements in a random order, The probability of A[i] being the maximum element of A[0:i] is $\frac{1}{i+1}$.

Let R_i be an indicator random variable, Indicating whether A[i] > A[i+1], at the ith step of the loop. From *Fact 1*, $R_i = 1$ if and only if A[i+1] is not the maximum among A[0:i+1]. The probability of that event is $\frac{i+1}{i+2}$ from *Fact 2*.

Clearly $Ex[R_i] = \frac{i+1}{i+2}$. It follows $W = \sum_{i=0}^{n-2} R_i = \frac{1}{2} + \frac{2}{3} + \dots + \frac{n-1}{n}$.

\mathbf{b}

That event happens if and only if

- max(A[1], A[2]) < A[3]. Its probability is $\frac{2}{3}$. Or
- max(A[1], A[2]) > A[3] and A[1] < A[3]. Its probability is $\frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$.

So the probability A[1] < A[2] after the first pass of bubble-sort is $\frac{2}{3} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3}$.

 $\mathbf{5}$

Fact. Given a randomly ordered A, Any A[: K] is also randomly ordered.

Fact. Uniformly $A[k] \in \{q_1, q_2, \ldots, q_k\}$ where $q_i \in A[:k]$ and $q_1 > q_2 > \cdots > q_k$.

In kth iteration, A[1: k-1] is sorted, and A[k] will be uniformly displaced to position $k, k-1, \ldots, 1$. Respectively,

#comparisons = 1, 2, ..., k. Respectively, Denote total number of comparisons #assignments = 0, 1, ..., k - 1.

by C and comparisons in kth iteration by C_k . Similarly A and A_k for assignments. In expectation

$$Ex[C_k] = \frac{1}{k}(1 + \dots + k) = \frac{1}{k}\frac{k \cdot k + 1}{2} = \frac{k+1}{2}$$
$$Ex[A_k] = \frac{1}{k}(1 + \dots + k - 1) = \frac{1}{k}\frac{(k-1)k}{2} = \frac{k-1}{2}$$

Clearly $C = \sum_{k=2}^{n} C_k$ and $A = \sum_{k=2}^{n} A_k$. So

$$Ex[C] = \sum_{k=2}^{n} \frac{k+1}{2}$$

= $\frac{1}{2} \sum_{k=2}^{n} k+1$
= $\frac{1}{2} \left[(\sum_{k=1}^{n+1} k) - 1 - 2 \right]$
= $\frac{1}{2} \left[\frac{(n+1)(n+2)}{2} - 3 \right]$
= $\frac{(n+1)(n+2)}{4} - \frac{3}{2}$
$$Ex[A] = \sum_{k=2}^{n} \frac{k-1}{2}$$

= $\frac{1}{2} \sum_{k=2}^{n} k - 1$
= $\frac{1}{2} \sum_{k=2}^{n} k - 1$
= $\frac{1}{2} \sum_{k=1}^{n-1} k$
= $\frac{1}{2} \frac{n(n-1)}{2}$
= $\frac{n(n-1)}{4}$