$\newcommand{\ddfrac}[2]{\frac{\displaystyle{#1}}{\displaystyle{#2}}}$
Exercises
Ex. 1.66
$$ \begin{aligned} ||L_3|| &= ||L_2|| \sin \theta_2 \\\\ ||L_4|| &= ||L_6|| \sin \theta_1 \\\\ ||L_5|| &= ||L_3|| + ||L_4|| \\\\ ||L_7|| &= \sqrt{(L_2)^2 - (L_3)^2} \\\\ ||L_7|| &= ||L_6|| \cos \theta_1 \rightarrow ||L_6|| = ||L_7|| / \cos \theta_1 \\\\ ||L_8|| &= ||L_1|| - ||L_6|| \\\\ ||L_9|| &= ||L_8|| \cos \theta_1 \end{aligned} $$Components are $\langle ||L_5||, ||L_9|| \rangle$.
Ex. 1.69
Observe $\overline{AC} = ||v+w||$ and $\overline{BD} = ||v-w||$.
By vector algebra,
$$ \begin{aligned} w + \frac{1}{2} (v-w) &= \frac{1}{2} (v+w) \\\\ \text{point of BD midpoint} &= \text{point of AC midpoint} \end{aligned} $$Hence bisects each other.
Ex. 1.70
Observe that we can construct the midpoint between the ends of two vectors by $\frac{1}{2} (v-u)$.
The midpoint of $H$ is $\frac{1}{2} [(v + \frac{1}{2} w) - \frac{1}{2} u] + \frac{1}{2} u = \frac{1}{2} v + \frac{1}{4} w + \frac{1}{4} u$.
The midpoint of $V$ is $\frac{1}{2} [(u + \frac{1}{2} z) - \frac{1}{2} v] + \frac{1}{2} v = \frac{1}{2} u + \frac{1}{4} z + \frac{1}{4} v$
Suffices to show $2u + v + z = 2v + w + u$ which reduces to $u+z = v+w$. By our diagram both yields exactly the same vector.
Note. I solved the problem without seeing the hint.
Ex. 1.71
vectors $v$ and $w$ are perpendicular if and only if
$$ \begin{aligned} ||w-v||^2 &= ||v||^2 + ||w||^2 \\\\ ||\langle c-a, d-b \rangle||^2 &= a^2 +b^2 + c^2 + d^2 \\\\ (c-a)^2 + (d-b)^2 &= \\\\ c^2 + a^2 - 2ac + d^2 + b^2 - 2bd &= \\\\ -2ac - 2bd &= 0 \\\\ ac - bd &= \end{aligned} $$