Problems

2

It is 66. For any i0,2,4,6,8i \in \\{ 0,2,4,6,8 \\}, 6imod  10=i6i \mod 10 = i.

3

It suffices to find a ring with a subgroup which in turn is not closed under multiplication. Particularly the ring of rationals Q\mathbb{Q} and its subset S={x2xZ}={x r2xZ,y=0,1}S = \{ \dfrac{x}{2} \mid x \in \mathbb{Z} \} = \{ x\ \dfrac{r}{2} \mid x \in \mathbb{Z}, y = 0,1 \}. It is a subgroup as x02+x12=x0+x12\dfrac{x_0}{2} + \dfrac{x_1}{2} = \dfrac{x_0 + x_1}{2} where x0+x1Zx_0 + x_1 \in \mathbb{Z}, and for x02\dfrac{x_0}{2} there is x02\dfrac{-x_0}{2} such that x02+x02=0\dfrac{x_0}{2} + \dfrac{-x_0}{2} = 0. Observe 1212=14S\dfrac{1}{2} \cdot \dfrac{1}{2} = \dfrac{1}{4} \notin S, So SS is not closed under multiplication.

P.S.

  • Any subgroup under addition of a ring, satisfies the ring’s definition, except for being closed under multiplication.
  • Any set SS closed under usual addition of integers, is also closed under usual multiplication of integers, Since ab=a+a++ab timesSab = \underbrace{a + a + \dots + a}_{b \text{ times}} \in S.

5

Unity’s uniqueness. Let 11 and 11' be two unities. Then by definition 11=11=111' = 1'1 = 1', and 11=11=11'1 = 11' = 1. So 1=11 = 1'.

Multiplicative inverse uniqueness. Fix a0a_0. Let b0b_0 and b1b_1 be two multiplicative inverses of a0a_0. Then b0a0=a0b0=1b_0a_0 = a_0b_0 = 1, and b1a0=a0b1=1b_1a_0 = a_0b_1 = 1. So

a0b0=a0b1b0(a0b0)=b0(a0b1)(b0a0)b0=(b0a0)b1b0=b1 \begin{aligned} a_0b_0 &= a_0b_1 \\ b_0(a_0b_0) &= b_0(a_0b_1) \\ (b_0a_0)b_0 &= (b_0a_0)b_1 \\ b_0 &= b_1 \end{aligned}

6

a. For Z6Z_6, 32=33^2 = 3 but 303 \neq 0 and 313 \neq 1.

b. For Z4Z_4, 33=03 \cdot 3 = 0 but 303 \neq 0.

c. For Z4Z_4, 21=2=232 \cdot 1 = 2 = 2 \cdot 3 and 202 \neq 0 but 131 \neq 3.

12

()(\rightarrow). By definition for some kk,

bk=cbk1=bkaa1=abka1= \begin{aligned} bk &= c \\ bk \cdot 1 &= \\ bk \cdot aa^{-1} &= \\ ab \cdot ka^{-1} &= \end{aligned}

()(\leftarrow). By definition for some kk,

abk=cabk= \begin{aligned} ab \cdot k &= c \\ a \cdot bk &= \end{aligned}

39

Consider arbitrary ar0a,ar1aSar_0a, ar_1a \in S. Then

ar0aar1a=ar0a2r1a=ar0r1aS \begin{aligned} ar_0a \cdot ar_1a \\ &= ar_0a^2r_1a \\ &= ar_0r_1a \in S \end{aligned}

As r0r1Rr_0r_1 \in R. Also,

ar0aar1a=a[r0ar1a]=a[(r0r1)a]=a(r0r1)aS \begin{aligned} ar_0a - ar_1a \\ &= a [r_0a - r_1a] \\ &= a \left [ (r_0 - r_1) a \right ] \\ &= a(r_0 - r_1)a \in S \end{aligned}

As r0r1Rr_0 - r_1 \in R.

Since 1R1 \in R, a1aSa1a \in S but a1a=a2=1a1a = a^2 = 1.

40

(1), (2), (3), (5), (6) of a ring’s definition in page 227 are satisfied by the usual properties of matrix algebra and integers.

Note the additive identity is the matrix

[00+00+00] \begin{bmatrix} 0 & 0+0 \\ 0+0 & 0 \end{bmatrix}

We show (4). For any matrix MRM \in R, where

M=[aa+ba+bb] M = \begin{bmatrix} a & a+b \\ a+b & b \end{bmatrix}

The matrix M-M defined as

M=[aa+(b)a+(b)b] -M = \begin{bmatrix} -a & -a+(-b) \\ -a+(-b) & -b \end{bmatrix}

is in M2(Z)M_2(Z), as aZ-a \in Z whenever aZa \in Z. Clearly MMM - M is the additive identity.

46

22Z2 \in 2Z and 33Z3 \in 3Z but 2+3=5∉2Z3Z2+3 = 5 \not\in 2Z \cup 3Z, so 2Z3Z2Z \cup 3Z is not closed under addition.